DOI QR코드

DOI QR Code

Optimized Thermoelectric Properties in Zn-doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur (Dept. of Material Sci. and Eng., Research Center for Sustainable Eco-Devices and Materials (ReSEM), Korea National University of Transportation) ;
  • Ur, Soon-Chul (Dept. of Material Sci. and Eng., Research Center for Sustainable Eco-Devices and Materials (ReSEM), Korea National University of Transportation)
  • Received : 2022.04.13
  • Accepted : 2022.05.30
  • Published : 2022.06.27

Abstract

Magnesium-antimonide is a well-known zintl phase thermoelectric material with low band gap energy, earth-abundance and characteristic electron-crystal phonon-glass properties. The nominal composition Mg3.8-xZnxSb2 (0.00 ≤ x ≤ 0.02) was synthesized by controlled melting and subsequent vacuum hot pressing method. To investigate phase development and surface morphology during the process, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were carried out. It should be noted that an additional 16 at. % Mg must be added to the system to compensate for Mg loss during the melting process. This study evaluated the thermoelectric properties of the material in terms of Seebeck coefficient, electrical conductivity and thermal conductivity from the low to high temperature regime. The results demonstrated that substituting Zn at Mg sites increased electrical conductivity without significantly affecting the Seebeck coefficient. The maximal dimensionless figure of merit achieved was 0.30 for x = 0.01 at 855 K which is 30% greater than the intrinsic value. Electronic flow properties were also evaluated and discussed to explain the carrier transport mechanism involved in the thermoelectric properties of this alloy system.

Keywords

Acknowledgement

This research was supported by the Korea Basic Science Institute grant funded by the Ministry of Education (grant no. 2019R1A6C1010047).

References

  1. A. R. M. Siddique, S. Mahmud and B. Van Heyst, Renew. Sustain. Energ. Rev., 73, 730 (2017). https://doi.org/10.1016/j.rser.2017.01.177
  2. H. S. Dow, M. Na, S. J. Kim and J. W. Lee, J. Mater. Chem. C, 7, 3787 (2019). https://doi.org/10.1039/c8tc06491a
  3. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen and Z. Ren, Nano Lett., 8, 4670 (2008). https://doi.org/10.1021/nl8026795
  4. Y. Pei, Z. M. Gibbs, A. Gloskovskii, B. Balke, W. G. Zeier and G. J. Snyder, Adv. Energy Mater., 4, 1400486 (2014). https://doi.org/10.1002/aenm.201400486
  5. Y. Zhao, J. S. Dyck, B. M. Hernandez and C. Burda, J. Am. Chem. Soc., 132, 4982 (2010). https://doi.org/10.1021/ja100020m
  6. S. M. Kauzlarich, S. R. Brown and G. J. Snyder, J. Chem. Soc. Dalt. Trans., 21, 2099 (2007).
  7. A. Bhardwaj, A. Rajput, A. K. Shukla, J. J. Pulikkotil, A. K. Srivastava, A. Dhar, G. Gupta, S. Auluck, D. K. Misra and R. C. Budhani, RSC Adv., 3, 8504 (2013). https://doi.org/10.1039/c3ra40457a
  8. A. Bhardwaj, N. S. Chauhan, S. Goel, V. Singh, J. J. Pulikkotil, T. D. Senguttuvan and D. K. Misra, Phys. Chem. Chem. Phys., 18, 6191 (2016). https://doi.org/10.1039/c5cp07482g
  9. J. Zhang, L. Song, K. A. Borup, M. R. V. Jorgensen and B. B. Iversen, Adv. Energy Mater., 8, 1 (2018).
  10. H. Tamaki, H. K. Sato and T. Kanno, Adv. Mater., 28, 10182 (2016). https://doi.org/10.1002/adma.201603955
  11. J. Zhang, L. Song and B. B. Iversen, Angew. Chemie., 132, 4308 (2020). https://doi.org/10.1002/ange.201912909
  12. Y. Wang, X. Zhang, Y. Wang, H. Liu and J. Zhang, Phys. Status Solidi A, 216, 1 (2019).
  13. F. Zhang, C. Chen, H. Yao, F. Bai, L. Yin, X. Li, S. Li, W. Xue, Y. Wang, F. Cao, X. Liu, J. Sui and Q. Zhang, Adv. Funct. Mater., 30, 1 (2020).
  14. A. Bhardwaj and D. K. Misra, RSC Adv., 4, 34552 (2014). https://doi.org/10.1039/c4ra04889j
  15. I.-K. Kim, K.-W. Jang and I.-H. Kim. Korean J. Mater. Res., 23, 98 (2013). https://doi.org/10.3740/MRSK.2013.23.2.98
  16. A. Bhardwaj, N. S. Chauhan and D. K. Misra, J. Mater. Chem. A, 3, 10777 (2015). https://doi.org/10.1039/C5TA02155C
  17. Z. Ren, J. Shuai, J. Mao, Q. Zhu, S. Song, Y. Ni and S. Chen, Acta Mater., 143, 265 (2018). https://doi.org/10.1016/j.actamat.2017.10.015
  18. P. Gorai, B. R. Ortiz, E. S. Toberer and V. Stevanovic, J. Mater. Chem. A, 6, 13806 (2018). https://doi.org/10.1039/C8TA03344G
  19. M. M. Rahman, A. K. M. A. Shawon and S.-C. Ur, Electron. Mater. Lett., 17, 102 (2021). https://doi.org/10.1007/s13391-020-00251-y
  20. A. K. M. A. Shawon, M. M. Rahman and S.-C Ur, Electron. Mater. Lett., 16, 540 (2020). https://doi.org/10.1007/s13391-020-00241-0
  21. J. Zhang, H. Zhang, J. Wu and J. Zhang, Pem Fuel Cell Testing and Diagnosis, p. 43-80, Elsevier (2013).
  22. M. T. Agne, K. Imasato, S. Anand, K. Lee, S. K. Bux, A. Zevalkink, A. J. E. Rettie, D. Y. Chung, M. G. Kanatzidis and G. J. Snyder, Mater. Today Phys., 6, 83 (2018). https://doi.org/10.1016/j.mtphys.2018.10.001
  23. A. Bhardwaj, N. S. Chauhan, S. Goel, V. Singh, J. J. Pulikkotil, T. D. Senguttuvan and D. K. Misra, Phys. Chem. Chem. Phys., 18, 6191 (2016). https://doi.org/10.1039/c5cp07482g
  24. Y. Cui, X. Zhang, B. Duan, J. Li, H. Yang, H. Wang, P. Wen, T. Gao, Z. Fang, G. Li, Y. Li and P. Zhai, Mater. Electron., 30, 15206 (2019). https://doi.org/10.1007/s10854-019-01893-x
  25. H. Wang, J. Chen, T. Lu, K. Zhu, S. Li, J. Liu and H. Zhao, Chin. Phys. B, 27, 1 (2018).
  26. Q. G. Cao, H. Zhang, M. B. Tang, H. H. Chen, X. X. Yang, Y. Grin and J. T. Zhao, J. Appl. Phys., 107, 10 (2010).