DOI QR코드

DOI QR Code

Soft Interconnection Technologies in Flexible Electronics

플렉시블 전자소자의 유연전도성 접합 기술

  • Lee, Woo-Jin (Department of Materials Science and Engineering, Seoul National University) ;
  • Lee, Seung-Min (Department of Materials Science and Engineering, Seoul National University) ;
  • Kang, Seung-Kyun (Department of Materials Science and Engineering, Seoul National University)
  • 이우진 (서울대학교 재료공학부) ;
  • 이승민 (서울대학교 재료공학부) ;
  • 강승균 (서울대학교 재료공학부)
  • Received : 2022.06.17
  • Accepted : 2022.06.30
  • Published : 2022.06.30

Abstract

Recent necessities of research have emerged about soft interconnection technologies for stable electric connections in flexible electronics. Mechanical failure in conventional metal solder interconnection can be solved as soft interconnections based on a small elastic modulus and a thin thickness. To enable stable electric connection while improving mechanical properties, highly conductive materials be thinned or mixed with a material that has a small elastic modulus. Representative soft interconnection technologies such as thin-film metallization, flexible conductive adhesives, and liquid metal interconnections are presented in this paper, and be focused on mechanical/electric properties improving strategies and their applications.

최근 플렉시블 전자소자의 안정적인 전기적 연결을 위한 유연전도성 접합 기술의 연구 필요성이 대두되고 있다. 기존의 금속 납땜 접합에서 발생하는 기계적 파손 문제는 탄성 계수가 작거나 두께가 얇은 재료를 기반으로 제작된 유연전도성 접합을 통해 해결할 수 있다. 기계적 특성을 향상시키는 동시에 안정적인 전기적 연결이 가능하도록 높은 전기전도도를 가진 물질을 박막화하거나, 작은 탄성 계수를 가진 물질에 혼합하는 방식 등으로 형성된다. 대표적인 유연전도성 접합 기술로는 박막 증착을 통한 유연전도성 접합, 유연 전도성 접착제 기반 접합, 그리고 액체 금속 기반의 전도성 접합 형성 방법 등이 있으며 본 논문에서는 각 방법들의 기계적/전기적 특성 향상 전략과 그 쓰임을 소개한다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 및 한국연구재단의 집단연구지원사업 연구비 지원에 의해 수행되었습니다('2021R1A4A1052035', 이종소재부품의 멀티스케일 계면 신뢰성 분석 및 향상 연구).

References

  1. W. Luft, "Solar Cell Interconnector Design", IEEE Transactions on Aerospace and Electronic Systems, AES-7(5), 781-791 (1971). https://doi.org/10.1109/TAES.1971.310318
  2. E. E. de Kluizenaar, "Reliability of Soldered Joints: A Description of the State of the Art: Part 1", Soldering & Surface Mount Technology, 2(1), 27-38 (1990). https://doi.org/10.1108/eb037704
  3. W. J. Plumbridge, "Solders in electronics", Journal of Materials Science", 31, 2501-2514 (1996). https://doi.org/10.1007/BF00687275
  4. S. M. Yi, I. S. Choi, B. J. Kim, Y. C. Joo, "Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue", Electronic Materials Letters, 14, 387-404 (2018). https://doi.org/10.1007/s13391-018-0043-0
  5. W. Xu, T. J. Lu, F. Wang, "Effects of interfacial properties on the ductility of polymer-supported metal films for flexible electronics", International Journal of Solids and Structures, 47(14-15), 1830-1837 (2010). https://doi.org/10.1016/j.ijsolstr.2010.03.017
  6. N. Palavesam, W. Hell, A. Drost, C. Landesberger, C. Kutter, K. Bock, "Influence of Flexibility of the Interconnects on the Dynamic Bending Reliability of Flexible Hybrid Electronics", Electronics, 9(2), 238 (2020). https://doi.org/10.3390/electronics9020238
  7. W. Xu, J. S. Yang, T. J. Lu, "Ductility of thin copper films on rough polymer substrates", Materials & Design, 32(1), 154-161 (2011). https://doi.org/10.1016/j.matdes.2010.06.018
  8. X. Luo, B. Zhang, G. Zhang, "Fatigue of metals at nanoscale: Metal thin films and conductive interconnects for flexible device application", Nano Materials Science, 1(3), 198-207 (2019). https://doi.org/10.1016/j.nanoms.2019.02.003
  9. H. S. Lim, S. N. Kim, J. A. Lim, S. D. Park, "Low temperature-cured electrically conductive pastes for interconnection on electronic devices", Journal of Materials Chemistry, 22(38), 20529-20534 (2012). https://doi.org/10.1039/c2jm33168c
  10. M. V. C. Morais, A. I. Oliva-Aviles, M. A. S. Matos, V. L. Tagarielli, S. T. Pinho, C. Hubner, F. Henning, "On the effect of electric field application during the curing process on the electrical conductivity of single-walled carbon nanotubes-epoxy composites", Carbon, 150, 153-167 (2019). https://doi.org/10.1016/j.carbon.2019.04.087
  11. T. Y. Kuo, Y. C. Shih, Y. C. Lee, H. H. Chang, Z. C. Hsiao, C. W. Chiang, S. M. Li, Y. J. Hwang, C. T. Ko, Y. H. Chen, "Flexible and ultra-thin embedded chip package", IEEE 2009 59th Electronic Components and Technology Conference, 1749-1753 (2009)
  12. J. Oh, K. Lee, T. Hughes, S. Forrest, K. Sarabandi, "Flexible Antenna Integrated with an Epitaxial Lift-Off Solar Cell Array for Flapping-Wing Robots", IEEE Transactions on Antennas and Propagation, 62(8), 4356-4361 (2014). https://doi.org/10.1109/tap.2014.2322895
  13. J. Gerth, U. Wiklund, "The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel", Wear, 264(9-10), 885-892 (2008). https://doi.org/10.1016/j.wear.2006.11.053
  14. N. Selvakumar, H. C. Barshilia, "Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications", Solar Energy Materials and Solar Cells, 98, 1-23 (2012). https://doi.org/10.1016/j.solmat.2011.10.028
  15. B. Y. Kim, S. H. Lee, S. G. Park, K. Y. Oh, J. Song, D. H. Kim, "Comparison Study for TiN Films Deposited from Different Method: Chemical Vapor Deposition and Atomic Layer Deposition", MRS Online Proceedings Library (OPL), 672, 78 (2001).
  16. A. Z. Moshfegh, "PVD Growth Method: Physics and Technology", Physics and Technology of Thin Films, 28-53 (2004).
  17. R. Morent, N. De Geyter, F. Axisa, N. De Smet, L. Gengembre, E. De Leersnyder, C. Leys, J. Vanfleteren, M. R. Machal, E. Schacht, E. Payen, "Adhesion enhancement by a dielectric barrier discharge of PDMS used for flexible and stretchable electronics", Journal of Physics D: Applied Physics, 40(23), 7392 (2007). https://doi.org/10.1088/0022-3727/40/23/021
  18. S. Iwamori, "Adhesion and Friction Properties of Fluorocarbon Polymer Thin Films Coated onto Metal Substrates", Key Engineering Materials, 384, 311-320 (2008). https://doi.org/10.4028/www.scientific.net/KEM.384.311
  19. F. Awaja, M. Gilbert, G. Kelly, B. Fox, P. J. Pigram, "Adhesion of polymers", Progress in Polymer Science, 34 (9), 948- 968 (2009). https://doi.org/10.1016/j.progpolymsci.2009.04.007
  20. Y. J. Fu, H. Z. Qui, K. S. Liao, S. J. Lue, C. C. Hu, K. R. Lee, J. Y. Lai, "Effect of UV-Ozone Treatment on Poly(dimethylsiloxane) Membranes: Surface Characterization and Gas Separation Performance", Langmuir, 26(6), 4392-4399 (2010). https://doi.org/10.1021/la903445x
  21. J. A. Jofre-Reche, J. Pulpytel, F. Arefi-Khonsari, J. M. MartinMartinez, "Increased adhesion of polydimethylsiloxane (PDMS) to acrylic adhesive tape for medical use by surface treatment with an atmospheric pressure rotating plasma jet", Journal of Physics D: Applied Physics, 49(33), 334001 (2016). https://doi.org/10.1088/0022-3727/49/33/334001
  22. V. M. Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kotz, A. Wokaun, "Photochemical modification of cross-linked poly (dimethylsiloxane) by irradiation at 172 nm", Macromolecules, 37(16), 5936-5943 (2004). https://doi.org/10.1021/ma049747q
  23. T. Fukushima, Y. Susumago, H. Kino, T. Tanaka, A. Alam, A. Hanna, S. S. Iyer, "Process Integration for FlexTrateTM", 2018 International Flexible Electronics Technology Conference (IFETC), 1-2 (2018).
  24. T. Fukushima, Y. Susumago, H. Kino, T. Tanaka, A. Alam, A. Hanna, S. Iyer, "Self-Assembly Technologies for FlexTrateTM", 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), 1836-1841 (2018).
  25. T. Fukushima, A. Alam, Z. Wan, S. C. Jangam, S. Pal, G. Ezhilarasu, A. Bajwa, S. S. Iyer, "FlexTrateTM"-Scaled Heterogeneous Integration on Flexible Biocompatible Substrates Using FOWLP", 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), 649-654 (2017).
  26. S. W. Youn, A. Ueno, M. Takahashi, R. Maeda, "Metallization of Cu on Parylene-C Film Micro-patterned by Hot-embossing", Polytronic 2007 - 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics, 45-50 (2007).
  27. G. Ezhilarasu, A. Hanna, R. Irwin, A. Alam, S. S. Iyer, "A Flexible, Heterogeneously Integrated Wireless Powered System for Bio-Implantable Applications using Fan-Out Wafer-Level Packaging", 2018 IEEE International Electron Devices Meeting (IEDM), 29-37 (2018).
  28. Y. R. Jang, R. Jeong, H. S. Kim, S. S. Park, "Fabrication of solderable intense pulsed light sintered hybrid copper for flexible conductive electrodes", Scientific reports, 11, 14551 (2021). https://doi.org/10.1038/s41598-021-94024-8
  29. S. H. Kim, S. Yang, "Low Melting Temperature Solder Materials for Use in Flexible Microelectronic Packaging Applications", Recent Progress in Soldering Materials, 7-37 (2017).
  30. V. Zardetto, T. M. Brown, A. Reale, A. Di Carlo, "Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties", Journal of Polymer Science Part B: Polymer Physics, 49(9), 638-648 (2011). https://doi.org/10.1002/polb.22227
  31. A. O. Ogunjimi, O. Boyle, D. C. Whalley, D. J. Williams, "A review of the impact of conductive adhesive technology on interconnection", Journal of Electronics Manufacturing, 2(3), 109-118 (1992). https://doi.org/10.1142/S0960313192000145
  32. D. W. K. Eikelboom, J. H. Bultman, A. Schonecker, M. H. H. Meuwissen, M. A. J. C. van den Nieuwenhof, D. L. Meier, "Conductive adhesives for low-stress interconnection of thin back-contact solar cells", Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002., 403-406 (2002)
  33. Y. Fu, M. Willander, J. Liu, "Spatial distribution of metal fillers in isotropically conductive adhesives", Journal of Electronic Materials, 30, 866-871 (2001). https://doi.org/10.1007/s11664-001-0073-4
  34. C. Kwon, D. Seong, J. Ha, D. Chun, J. H. Bae, K. Yoon, M. Lee, J. W, C. W, S. Lee, Y. M, K. I. J, D. S, T. Lee, "Self-Bondable and Stretchable Conductive Composite Fibers with Spatially Controlled Percolated Ag Nanoparticle Networks: Novel Integration Strategy for Wearable Electronics", Advanced Functional Materials, 30(49), 2005447 (2020). https://doi.org/10.1002/adfm.202005447
  35. D. S. Melchert, R. R. Collino, T. R. Ray, N. D. Dolinski, L. Friedrich, M. R. Begley, D. S. Gianola, "Flexible Conductive Composites with Programmed Electrical Anisotropy Using Acoustophoresis", Advanced Materials Technologies, 4(12), 1900586 (2019). https://doi.org/10.1002/admt.201900586
  36. Y. Li, C. P. Wong, "Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications", Materials Science and Engineering: R: Reports, 51(1-3), 1-35 (2006). https://doi.org/10.1016/0025-5416(81)90099-9
  37. F. L. Jin, X. Li, S. J. Park, "Synthesis and application of epoxy resins: A review", Journal of Industrial and Engineering Chemistry, 29, 1-11 (2015). https://doi.org/10.1016/j.jiec.2015.03.026
  38. H. Wei, J. Xia, W. Zhou, L. Zhou, G. Hussain, Q. Li, K. K. Ostrikov, "Adhesion and cohesion of epoxy-based industrial composite coatings", Composites Part B: Engineering, 193, 108035 (2020). https://doi.org/10.1016/j.compositesb.2020.108035
  39. J. H. Choi, M. G. Shin, Y. Jung, D. H. Kim, J. S. Ko, "Fabrication and Performance Evaluation of Highly Sensitive Flexible Strain Sensors with Aligned Silver Nanowires", Micromachines (Basel), 11(2), 156 (2020). https://doi.org/10.3390/mi11020156
  40. E. L. Warrick, "Crystallinity and orientation in silicone rubber. II. Physical measurements", Journal of Polymer Science, 27(115), 19-38 (1958). https://doi.org/10.1002/pol.1958.1202711502
  41. H. M. Jeong, J. B. Lee, S. Y. Lee, B. K. Kim, "Shape memory polyurethane containing mesogenic moiety", Journal of Materials Science, 35, 279-283 (2000). https://doi.org/10.1023/A:1004728814128
  42. W. Zhou, S. Qi, C. Tu, H. Zhao, "Novel heat-conductive composite silicone rubber", Journal of Applied Polymer Science, 104(4), 2478-2483 (2007). https://doi.org/10.1002/app.25479
  43. T. K. Chen, J. Y. Chui, T. S. Shieh, "Glass Transition Behaviors of a Polyurethane Hard Segment based on 4,4'-Diisocyanatodiphenylmethane and 1,4-Butanediol and the Calculation of Microdomain Composition", Macromolecules, 30(17), 5068-5074 (1997). https://doi.org/10.1021/ma9618639
  44. M. D. Damaceanu, R. D. Rusu, M. Bruma, A. Muller, "Thin polyimide films for dielectric interlayer application", IEEE 2009 International Semiconductor Conference, 351-354 (2009).
  45. X. Liu, G. Gao, L. Dong, G. Ye, Y. Gu, "Correlation between hydrogen-bonding interaction and mechanical properties of polyimide fibers", Polymers for Advanced Technologies, 20(4), 362-366 (2009). https://doi.org/10.1002/pat.1232
  46. Y. Yin, O. Yamada, K. Tanaka, K. I. Okamoto, "On the Development of Naphthalene-Based Sulfonated Polyimide Membranes for Fuel Cell Applications", Polymer Journal, 38, 197-219 (2006). https://doi.org/10.1295/polymj.38.197
  47. J. S. Park, T. W. Kim, D. Stryakhilev, J. S. Lee, S. G. An, Y. S. Pyo, D. B. Lee, Y. G. Mo, D. U. Jin, H. K. Chung, "Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors", Applied Physics Letters, 95, 013503 (2009). https://doi.org/10.1063/1.3159832
  48. V. E. Ogbonna, A. P. I. Popoola, O. M. Popoola, S. O. Adeosun, "A review on polyimide reinforced nanocomposites for mechanical, thermal, and electrical insulation application: Challenges and recommendations for future improvement", Polymer Bulletin, 79, 663-695 (2022). https://doi.org/10.1007/s00289-020-03487-8
  49. P. Vijayan P., D. Puglia, M. A. S. A. Al-Maadeed, J. M. Kenny, S. Thomas, "Elastomer/thermoplastic modified epoxy nanocomposites: The hybrid effect of 'micro' and 'nano' scale", Materials Science and Engineering: R: Reports, 116, 1-29 (2017). https://doi.org/10.1016/0921-5093(89)90120-2
  50. F. Yakuphanoglu, A. A. Al-Ghamdi, F. El-Tantawy, "Electromagnetic interference shielding properties of nanocomposites for commercial electronic devices", Microsystem Technologies, 21, 2397-2405 (2015). https://doi.org/10.1007/s00542-014-2394-2
  51. H. P. Wu, J. F. Liu, X. J. Wu, M. Y. Ge, Y. W. Wang, G. Q. Zhang, J. Z. Jiang, "High conductivity of isotropic conductive adhesives filled with silver nanowires", International journal of adhesion and adhesives, 26(8), 617-621 (2006). https://doi.org/10.1016/j.ijadhadh.2005.10.001
  52. M. J. Yim, Y. Li, K. S. Moon, K. W. Paik, C. P. Wong, "Review of Recent Advances in Electrically Conductive Adhesive Materials and Technologies in Electronic Packaging", Journal of Adhesion Science and Technology, 22(14), 1593-1630 (2008). https://doi.org/10.1163/156856108X320519
  53. M. J. Kim, Y. S. Cho, Y. D. Huh, "Synthesis of Silver Nanowires by Reduction of Silver-Pyridine Complexes", Bulletin of the Korean Chemical Society, 33(5), 1762-1764 (2012). https://doi.org/10.5012/bkcs.2012.33.5.1762
  54. M. I. Talukdar, E. H. Baker, "Conductivity studies on silver oxide", Solid State Communications, 7(2), 309-310 (1969). https://doi.org/10.1016/0038-1098(69)90407-4
  55. S. J. Raab, R. Guschlbauer, M. A. Lodes, C. Korner, "Thermal and Electrical Conductivity of 99.9% Pure Copper Processed via Selective Electron Beam Melting", Advanced Engineering Materials, 18(9), 1661-1666 (2016). https://doi.org/10.1002/adem.201600078
  56. J. G. Cook, M. P. van der Meer, "The thermal conductivity and electrical resistivity of gold from 80 to 340 K", Canadian Journal of Physics, 48(3), 254-263 (1970). https://doi.org/10.1139/p70-035
  57. M. T. S. Nair, L. Guerrero, O. L. Arenas, P. K. Nair, "Chemically deposited copper oxide thin films: structural, optical and electrical characteristics", Applied Surface Science, 150(1-4), 143-151 (1999). https://doi.org/10.1016/S0169-4332(99)00239-1
  58. C. W. Corti, R. J. Holliday, "Commercial aspects of gold applications: from materials science to chemical science", Gold Bulletin, 37, 20- 26 (2004). https://doi.org/10.1007/bf03215513
  59. S. Simaafrookhteh, R. Taherian, M. Shakeri, "Stochastic Microstructure Reconstruction of a Binder/Carbon Fiber/Expanded Graphite Carbon Fiber Paper for PEMFCs Applications: Mass Transport and Conductivity Properties", Journal of The Electrochemical Society, 166(7), F3287 (2019). https://doi.org/10.1149/2.0331907jes
  60. D. Dasgupta, F. Demichelis, A. Tagliaferro, "Electrical conductivity of amorphous carbon and amorphous hydrogenated carbon", Philosophical Magazine B, 63(6), 1255-1266 (1991). https://doi.org/10.1080/13642819108205558
  61. F. H. Gojny, M. H. Wichmann, B. Fiedler, I. A. Kinloch, W. Bauhofer, A. H. Windle, K. Schulte, "Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites", Polymer, 47(6), 2036-2045 (2006). https://doi.org/10.1016/j.polymer.2006.01.029
  62. Y. H. Lai, W. T. Wang, C. H. Tu, K. L. Hwu, H. H. Lu, L. H. Chang, Y. H. Lin, "4.2: Study of ACF Bonding Technology in Flexible Display Module Packages", SID Symposium Digest of Technical Papers, 46(1), 12-15 (2015). https://doi.org/10.1002/sdtp.10170
  63. M. J. Rizvi, Y. C. Chan, C. Bailey, H. Lu, A. Sharif, "The effect of curing on the performance of ACF bonded chip-on- flex assemblies after thermal ageing", Soldering & Surface Mount Technology, 17(2), 40-48 (2005). https://doi.org/10.1108/09540910510597492
  64. M. Takeichi, "19.2: Invited Paper: History of ACF Development and New Solutions", SID Symposium Digest of Technical Papers, 39(1), 244-248 (2008). https://doi.org/10.1889/1.3069635
  65. A. Tolvgard, J. Malmodin, J. Liu, Z. Lai, "A reliable and environmentally friendly packaging technology-flip chip joining using anisotropically conductive adhesive", Proceedings of 3rd International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing, 19-26 (1998).
  66. M. Catchpole, "E-Textile Seam Crossing with Screen Printed Circuits and Anisotropic Conductive Film", Multidisciplinary Digital Publishing Institute Proceedings, 32(1), 16 (2019).
  67. J. H. Byeon, D. J. Yoon, K. W. Paik, "A Study on the Magnetic Dispersion of the Conductive Particles of Anchoring-Polymer-Layer Anisotropic Conductive Films and Its Fine-Pitch Interconnection Properties", IEEE Transactions on Components, Packaging and Manufacturing Technology, 9(7), 1235-1243 (2019). https://doi.org/10.1109/tcpmt.2019.2921055
  68. J. H. Ahn, J. H. Choi, C. Y. Lee, "Electrical evaluations of anisotropic conductive film manufactured by electrohydrodynamic ink jet printing technology", Organic Electronics, 78, 105561 (2020). https://doi.org/10.1016/j.orgel.2019.105561
  69. R. Niu, M. Jin, J. Cao, Z. Yan, J. Gao, H. Wu, G. Zhou, L. Shui, "Self-Healing Flexible Conductive Film by Repairing Defects via Flowable Liquid Metal Droplets", Micromachines (Basel), 10(2), 113 (2019). https://doi.org/10.3390/mi10020113
  70. M. Hoppe, A. Thaer, "Scanning Acoustic Microscopy", Microscopic Methods in Metals, 7-28 (1986).
  71. S. Carnevali, C. Proust, M. Soucille, "Unsteady aspects of sodium-water-air reaction", Chemical Engineering Research and Design, 91(4), 633-639 (2013). https://doi.org/10.1016/j.cherd.2013.02.005
  72. F. M. Kelly, W. B. Pearson, "The Rubidium Transition at ~ 180 ° K", Canadian Journal of Physics, 33(1), 17-24 (1955). https://doi.org/10.1139/p55-003
  73. S. Cheng, Z. Wu, "Microfluidic Electronics", Lab on a Chip, 12(16), 2782-2791 (2012). https://doi.org/10.1039/c2lc21176a
  74. Q. Xu, N. Oudalov, Q. Guo, H. M. Jaeger, E. Brown, "Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium", Physics of Fluids, 24(6), 063101 (2012). https://doi.org/10.1063/1.4724313
  75. S. Cheng, Z. Wu, "Microfluidic stretchable RF electronics", Lab on a Chip, 10(23), 3227-3234 (2010). https://doi.org/10.1039/c005159d