DOI QR코드

DOI QR Code

Collagen Extraction Using Supercritical CO2 from Animal-Derived Waste Tissue

동물 유래 폐지방으로부터 초임계 CO2를 이용한 콜라겐 추출

  • No, Seong-Rae (School of Energy, Materials and Chemical Engineering, Korea University of Technology & Education) ;
  • Shin, Yong-Woo (School of Energy, Materials and Chemical Engineering, Korea University of Technology & Education) ;
  • You, Seong-sik (School of Energy, Materials and Chemical Engineering, Korea University of Technology & Education)
  • 노성래 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 신용우 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 유성식 (한국기술교육대학교 에너지.신소재.화학공학부)
  • Received : 2022.01.25
  • Accepted : 2022.03.23
  • Published : 2022.08.01

Abstract

This study is about a technique for obtaining collagen by extracting fat by treating collagen-containing liposuction effluent in the presence of supercritical fluid. Using a supercritical solvent, a collagen extract could be obtained from animal-derived fat in a short time (about 6 hours), and about 2-3% of collagen by mass compared to the raw material could be obtained. The presence of collagen in the extract obtained by supercritical extraction was confirmed by SDS-PAGE, and it was confirmed that it was type 1 collagen having a relatively large molecular weight. In addition, the growth factors of IGF-1, bFGF, VEGF and NGF were analyzed to find out which growth factors were present in the collagen obtained by supercritical extraction, and it was found that these growth factors were contained in the extract. There was no significant difference in DNA content per mg of sample before and after supercritical treatment. Further in-depth studies are likely to be needed on decellularization technology using the supercritical process. In conclusion, the extracellular matrix obtained through the solvent extraction process using a supercritical fluid contains growth factors above a certain amount even after decellularization and removal of fat, so that it was found that not only biocompatibility is greatly increased, but also tissue regeneration can be rapidly induced.

본 연구는 콜라겐을 함유하는 지방흡입 유출물을 초임계 유체 존재 하에 처리하여 지방을 추출하여 콜라겐을 얻어 내는 기술에 대한 것이다. 초임계 용매를 이용하여 동물 유래 지방으로부터 단시간(약 6시간)에 콜라겐 추출물을 얻을 수 있었으며, 원료 대비 질량으로 대략 2~3%의 콜라겐을 얻을 수 있었다. 초임계 추출로 얻어진 추출물을 SDS-PAGE를 이용하여 콜라겐이 존재함을 확인하였고, 비교적 분자량이 큰 타입1 콜라겐임을 알 수 있었다. 또한, 초임계 추출에 의해서 얻어진 콜라겐 중에 어떤 성장인자 들이 있는 지 알아보기 위하여 IGF-1, bFGF, VEGF 및 NGF의 성장인자에 대해서 분석하였으며, 이들 성장인자 들이 추출물에 함유 되어 있음을 알 수 있었다. 초임계 처리 전, 후의 시료 mg 당 DNA함량은 큰차이를 보이지 않았다. 초임계 공정을 이용한 탈세포화 기술에 대해서는 보다 심도 깊은 추가적인 연구가 필요할 것 같다. 결론적으로 초임계유체를 이용한 용매추출 과정을 통하여 얻어진 세포외기질은 탈세포 및 탈지하여도 일정 함량 이상의 성장인자를 함유하여 생체적합성이 매우 증가될 뿐만 아니라, 조직의 재생을 빠르게 유도할 수 있음을 알 수 있었다.

Keywords

Acknowledgement

이 논문은 2020년도 한국기술교육대학교 교수 교육연구진흥과제 지원에 의하여 연구가 수행되었으며 감사드립니다.

References

  1. https://ko.wikipedia.org/wiki/%EC%BD%9C%EB%9D%BC%EA%B2%90.
  2. Di Lullo, G. A., Sweeney, S. M., Korkko, J., Ala-Kokko, L. and San Antonio, J. D., "Mapping the Ligand-binding Sites and Disease-associated Mutations on the Most Abundant Protein in the Human, Type I Collagen," J. Bio. Chem., 277, 4223-4231(2002). https://doi.org/10.1074/jbc.M110709200
  3. Lafarga, T. and Hayes, M., "Bioactive Peptides from Meat Muscle and by-products: Generation, Functionality and Application as Functional Ingredients," Meat Science, 98, 227-239(2014). https://doi.org/10.1016/j.meatsci.2014.05.036
  4. Schmidt, M. M., Dornelles, R. C. P., Mello, R. O., Kubota, E. H., Mazutti, M. A., Kempka, A. P. and Demiate, I. M., "Collagen Extraction Process," Int. Food Res. J., 23, 913-922(2016).
  5. Mizuta, S., Hwang, J. and Yoshinaka, R., "Molecular Species of Collagen from Wing Muscle of Skate (Raja kenojei)," Food Chem., 76, 53-58(2002). https://doi.org/10.1016/S0308-8146(01)00249-7
  6. Kimura, S., Omura, Y., Ishida, M. and Shirai, H., "Molecular Characterization of Fibrillar Collagen from the Body Wall of Starfish Asterias Amurensis," Comp Biochem Physiol., 104, 663-668(1993).
  7. Nagai, T. and Suzuki, N., "Partial Characterization of Collagen from Purple Sea Urchin (Anthocidaris crassispina) Test," Int J. Food Sci. Technol., 35, 497-501(2000). https://doi.org/10.1046/j.1365-2621.2000.00406.x
  8. Wang, L., Liang, Q., Chen, T., Wang, Z., Xu, J. and Ma, H., "Characterization of Collagen from the Skin of Amur Sturgeon," Food Hydrocolloids, 38, 104-109(2014). https://doi.org/10.1016/j.foodhyd.2013.12.002
  9. Nagai, T., "Characterization of Collagen from Emu (Dromaius novaehollandiae) Skins," Journal of Food Science and Technology, 52, 2344-2351(2015). https://doi.org/10.1007/s13197-014-1266-1
  10. Li, D., Mu, C., Cai, S. and Lin, W., "Ultrasonic Irradiation in the Enzymatic Extraction of Collagen," Ultrasonics Sonochemistry, 16, 605-609(2009). https://doi.org/10.1016/j.ultsonch.2009.02.004
  11. Woo, J. W., Yu, S. J., Cho, S. M., Lee, Y. B. and Kim, S. B., "Extraction Optimization and Properties of Collagen from Yellowfin Tuna (Thunnus albacares) Dorsal Skin," Food Hydrocolloids, 22, 879-887(2008). https://doi.org/10.1016/j.foodhyd.2007.04.015
  12. Zavareze, E. R., Silva, C. M., Mellado, M. S. and Prentice-Hernandez, C., "Funcionalidade de Hidrolisados Proteicos de Cabrinha (Prionotus punctatus) Obtidos a Partir de Diferentes Proteases Microbianas," Quimica. Nova, 32, 1739-1743(2009). https://doi.org/10.1590/S0100-40422009000700011
  13. Kim, H. K., Kim, Y. H., Kim, Y. J., Park, H. J. and Lee, N. H., "Effects of Ultrasonic Treatment on Collagen Extraction from Skins of the Sea Bass Lateolabrax Japonicus," Fisheries Science, 78, 485-490(2012). https://doi.org/10.1007/s12562-012-0472-x
  14. Kim, H. K., Kim, Y. H., Park, H. J. and Lee, N. H., "Application of Ultrasonic Treatment to Extraction of Collagen from the Skins of Sea Bass Lateolabrax Japonicus," Fisheries Science, 79, 849-856(2013). https://doi.org/10.1007/s12562-013-0648-z
  15. Ran, X. G. and Wang, L. Y., "Use of Ultrasonic and Pepsin Treatment in Tandem for Collagen Extraction from Meat Industry by-products," Journal of the Science of Food and Agriculture, 94, 585-590(2014). https://doi.org/10.1002/jsfa.6299
  16. Crapo, P. M., Gilbert, T. W. and Badylak, S. F., "An Overview of Tissue and Whole Organ Decellularization Processes," Biomaterials, 32, 3233-3243(2011). https://doi.org/10.1016/j.biomaterials.2011.01.057
  17. Sawada, K., Terada, D. Yamaoka, T., Kitamura, S. and Fujisato, T., "Cell Removal with Supercritical Carbon Dioxide for Acellular Artificial Tissue," J. Chem. Technol. Biotechnol., 83, 943-949(2008). https://doi.org/10.1002/jctb.1899
  18. Wang, J. K., Luo, B., Guneta, V., Li, L., Foo, S. E. M., Dai, Y., Tan, T. T. Y., Tan, N. S., Choonga, C. and Wong, M. T. C., "Supercritical Carbon Dioxide Extracted Extracellular Matrixmaterial from Adipose Tissue," Materials Science and Engineering C, 75, 349-358(2017). https://doi.org/10.1016/j.msec.2017.02.002
  19. Casalia, D. M., Handletonb, R. M. and Matthews, M. A., "A Novel Supercritical CO2-Based Decellularization Method for Maintaining Scaffold Hydration and Mechanical Properties," J. of Supercritical Fluids, 131, 72-81(2018). https://doi.org/10.1016/j.supflu.2017.07.021