DOI QR코드

DOI QR Code

Comparison of Characteristics of Acid-catalyzed Hydrothermal Fractionation for Production of Hemicellulose Hydrolyzate from Agricultural Residues

농경잔류물로부터 헤미셀룰로오스 가수분해물 생산을 위한 산촉매 열수 분별공정의 특성 비교

  • Hwang, Jong Seo (Department of Environmental Engineering, Kwangwoon University) ;
  • Oh, Kyeong Keun (Department of Chemical Engineering, Dankook University) ;
  • Yoo, Kyung Seun (Department of Environmental Engineering, Kwangwoon University)
  • 황종서 (광운대학교 환경공학과) ;
  • 오경근 (단국대학교 화학공학과) ;
  • 유경선 (광운대학교 환경공학과)
  • Received : 2022.03.14
  • Accepted : 2022.04.05
  • Published : 2022.08.01

Abstract

The objective of this work was to investigate the feasibility of acid-catalyzed hydrothermal fractionation for maximum solubilization of the hemicellulosic portion of two typical agricultural residues. The fractionation conditions converted into combined reaction severity (CS) in the range of 1.2-2.9 was used to establish a simple reaction criteria at glance. The hemicellulosic sugar yield of 56.6% was shown when rice straw was fractionated at the conditions at the conditions; 160 ℃ of temperature 0.75% (w/v) of H2SO4, 20 min of reaction time, 1:15 solid/liquid ratio. The hemicellulosic sugar yield of 83.0%, however, was achieved when barley straw was fractionated at the conditions at the conditions; 150 ℃ of temperature 0.75% (w/v) of H2SO4, and 15 min of reaction time, 1:10 solid/liquid ratio. For barley straw, acid-catalyzed hydrothermal fractionation could be effectively performed. After the fractionation process, the remaining fractionated solids were 48.5% and 57.5% from raw rice and barley straws, respectively. The XMG contents in the solid residues decreased from 17.3% and 17.6% to 6.0% and 2.6%, which corresponded to 16.7% and 8.5% on the basis of the raw straws, respectively. In another way, only 5.6% of cellulose and 8.5% of XMG were lost due to excessive decomposition during the acid-catalyzed hydrothermal fractionation of barley straw, compared to cellulose and XMG losses of 6.4% and 26.6% in rice straw. Hemicellulosic sugars from the rice straw were considered more over-decomposed due to the somewhat higher reaction severity at the acid-catalyzed hydrothermal fractionation.

본 연구의 목적은 국내 대표적인 농경잔류물인, 볏짚과 보릿짚을 이용하여 헤미셀룰로오스 부분의 최대 가용화를 위한 산 촉매 열수 분별공정의 타당성을 조사한 것이다. 1.2-2.9 범위의 반응가혹도(CS; Combined reaction severity)에서 다양한 분별 조건들을 사용하여 초기 반응조건 기준을 설정했다. 볏짚의 경우, 160 ℃의 반응온도, 0.75%(w/v)의 H2SO4, 20분의 반응시간, 그리고 1:15의 고체/액체 비율을 가진 반응 조건에서 56.6%의 헤미셀룰로스 당 수율을 얻을 수 있었으며, 보릿짚의 경우, 150 ℃ 반응온도, 0.75%(w/v) H2SO4, 15분의 반응시간, 1:10의 고체/액체 비율에서 83.0%의 헤미셀룰로스 당 수율을 얻었다. 따라서, 볏짚과 비교하여 보릿짚의 경우 산촉매 열수분획을 효과적으로 수행할 수 있었다. 분별과정 후 남은 분획된 고형분은 볏짚과 보릿짚에서 각각 48.5%와 57.5%였다. 분별된 볏짚과 보릿짚의 XMG(Xylan+Mannan+Galactan) 함량은 17.3% 및 17.6%에서 6.0% 및 2.6%로 각각 감소하였으며, 이는 원료 짚 기준으로 각각 16.7% 및 8.5%에 해당한다. 또한, 보리 짚의 산촉매 열수분별 과정에서 과도한 분해로 인해 셀룰로오스 및 XMG의 5.6% 및 8.5%만 손실된 반면, 볏짚의 셀룰로오스 및 XMG 손실은 6.4% 및 26.6%이었다. 볏짚의 헤미셀룰로스 당은 산 촉매 열수 분별공정중, 다소 높은 반응가혹도로 인해 심하게 과분해된 것에 기인한다.

Keywords

Acknowledgement

이 논문은 2022년도 교내학술연구비 지원에 의해 연구되었음.

References

  1. Prasad, S., Singh, A., Korres, N. E., Rathore, D., Sevda, S. and Pant, D., "Sustainable Utilization of Crop Residues for Energy Generation: A Life Cycle Assessment (LCA) Perspective," Bioresour. Tehcnol., 303, 122964-122978(2020). https://doi.org/10.1016/j.biortech.2020.122964
  2. Van Meerbeek, K., Muys, B. and Hermy, M., "Lignocellulosic Biomass for Bioenergy Beyond Intensive Cropland and Forests," Renew Sustain Energy Rev, 102, 139-149(2019). https://doi.org/10.1016/j.rser.2018.12.009
  3. Opia, A. C., Hamid, M. K. B. A., Syahrullail, S., Abd Rahim, A. B. and Johnson, C. A., "Biomass as a Potential Source of Sustainable Fuel, Chemical and Tribological Materials-Overview," Mater Today Proc, 39(2), 922-928(2020).
  4. Jovic, T. H., Kungwengwe, G., Mills, A., and Whitaker, I. S., "Plant-Derived Biomaterials: A Review of 3D Bioprinting and Biomedical Applications," Front. Mech. Eng., 5(19), 1-18(2019). https://doi.org/10.3389/fmech.2019.00001
  5. DiGregorio, B. E., "Biobased Performance Bioplastic," Mirel. Chemistry & Biology, 16, 1-2(2009). https://doi.org/10.1016/j.chembiol.2009.01.001
  6. Demirbas, M. F., Mustafa, B. and Havva, B., "Potential Contribution of Biomass to the Sustainable Energy Development," Energy Convers Manag., 50(7), 1746-1760(2009). https://doi.org/10.1016/j.enconman.2009.03.013
  7. Dincer, I., "Renewable Energy and Sustainable Development: a Crucial Review," Renew Sustain Energy Rev., 4(2), 157-175(2000). https://doi.org/10.1016/S1364-0321(99)00011-8
  8. Koh, L. P. and Jaboury, G., "Biofuels, Biodiversity, and People: Understanding the Conflicts and Finding Opportunities," Biol Conserv., 141(10), 2450-2460(2008). https://doi.org/10.1016/j.biocon.2008.08.005
  9. Cherubini, F., "The Biorefinery Concept: Using Biomass Instead of Oil for Producing Energy and Chemicals," Energy Convers Manag., 51(7), 1412-1421(2010). https://doi.org/10.1016/j.enconman.2010.01.015
  10. Jeong, J. M., Kim, E. C., Venkatanagappa, S. and Lee, J. S., "Review of Rice: Production, Trade, Consumption, and Future Demand in Korea and Worldwide," Korean J. Crop. Sci., 62, 157-165(2017). https://doi.org/10.7740/KJCS.2017.62.3.157
  11. Kim, S. and Dale, B. E., "Global Potential Bioethanol Production from wAsted Crops and Crop Residues," Biomass Bioenerg., 26, 361-375(2004). https://doi.org/10.1016/j.biombioe.2003.08.002
  12. Gadde, B., Bonnet, S., Menke, C. and Garivait, S., "Air Pollutant Emissions from Rice Straw Open Field Burning in India, Thailand and the Philippines," Environ. Pollut., 157, 1554-1558(2009). https://doi.org/10.1016/j.envpol.2009.01.004
  13. Ranjan, A., Khanna, S. and Moholkar, V., "Feasibility of Rice Straw as Alternate Substrate for Biobutanol Production," Appl. Energy, 103, 32-38(2013). https://doi.org/10.1016/j.apenergy.2012.10.035
  14. Hendriks, A. T. W. M. and Zeeman, G., "Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass," Bioresour. Tehcnol., 100, 10-18(2009). https://doi.org/10.1016/j.biortech.2008.05.027
  15. Kim, S. and Dale, B. E., "Global Potential Bioethanol Production from Wasted Crops and Crop Residues," Biomass Bioenergy, 26, 361-375(2004). https://doi.org/10.1016/j.biombioe.2003.08.002
  16. Chen, Y., Sharma-Shivappa, R. R., Keshwani, D. and Chen, C., Appl. Biochem. Biotechnol., 142, 276-290(2007). https://doi.org/10.1007/s12010-007-0026-3
  17. FAOSTAT. Food and agriculture organization of the United Nations, http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (Accessed Oct. 2021).
  18. Linde, M., Galbe, M. and Zacchi, G., "Simultaneous Saccharification and Fermentation of Steam-pretreated Barley Straw At Low Enzyme Loading and Low Yeast Concentration," Enz. Microb. Tech., 40, 1100-1107(2007). https://doi.org/10.1016/j.enzmictec.2006.08.014
  19. Alvira, P., Tomas-pejo, E., Ballesteros, M. and Negro, M. J., "Pretreatment Technologies for An Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review," Bioresour. Technol., 101, 4851-4861(2010). https://doi.org/10.1016/j.biortech.2009.11.093
  20. Oliva, J. M., Saez, F. S., Ballesteros, I., Gonzalez, A., Negro, M. J., Manzanares, P. and Ballesteros, M., "Effect of Lignocellulosic Degradation Compounds from Steam Explosion Pretreatment on Ethanol Fermentation by Thermotolerant Yeast Kluyveromyces Marxianus," Appl. Biochem. Biotechnol., 105, 141-154(2003). https://doi.org/10.1385/ABAB:105:1-3:141
  21. Hendriks, A. T. W. M. and Zeeman, G., "Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass," Bioresour. Tehcnol., 100, 10-18(2009). https://doi.org/10.1016/j.biortech.2008.05.027
  22. Alvira, P., Tomas-pejo, E., Ballesteros, M. and Negro, M. J., "Pretreatment Technologies for An Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review," Bioresour. Technol., 101, 4851-4861(2010). https://doi.org/10.1016/j.biortech.2009.11.093
  23. Ramos, L. P., "The Chemistry Involved in the Steam Treat of Lignocellulosic Materials," Quim. Nova, 26(6), 863-871(2003). https://doi.org/10.1590/S0100-40422003000600015
  24. Bozell, J. J., "Feedstocks for the Future-Biorefinery Production of Chemicals from Renewable Carbon," Clean, 36(8), 641-647(2008).
  25. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D., Determination of structural carbohydrates and lignin in biomass (NREL/TP-510-42618). National Renewable Energy Laboratory(2008).
  26. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D., Determination of sugars, byproducts, and degradation products in liquid fraction process samples (NREL/TP-510-42623). National Renewable Energy Laboratory(2006).
  27. Lee, J. W. and Jeffries, T. W., "Efficiencies of Acid Catalysts in the Hydrolysis of Lignocellulosic Biomass over a Range of Combined Severity Factors," Bioresour. Technol., 102, 5884-5890(2011). https://doi.org/10.1016/j.biortech.2011.02.048
  28. Guo, G. L., Chen, W. H., Chen, W. H., Men, L. C. and Hwang, W. S., "Characterization of Dilute Acid Pretreatment of Silvergrass for Ethanol Production," Bioresour. Technol., 99, 6046-6053(2008). https://doi.org/10.1016/j.biortech.2007.12.047
  29. Overend, R. P. and Chornet, E., "Fractionation of Lignocellulosics by Steam/aqueous Pretreatments," Philos. Trans. R. Soc. London, A321, 523-536(1987). https://doi.org/10.1098/rsta.1987.0029