DOI QR코드

DOI QR Code

Enhanced Arsenic(V) Removal from Aqueous Solution by a Novel Magnetic Biochar Derived from Dairy Cattle Manure

  • Akyurek, Zuhal (Burdur Mehmet Akif Ersoy University, Faculty of Engineering and Architecture, Department of Energy Systems Engineering, Istiklal Campus) ;
  • Celebi, Hande (Eskisehir Tecnical University, Faculty of Engineering, Department of Chemical Engineering, Iki Eylul Campus) ;
  • Cakal, Gaye O. (Ankara University, Institute of Nuclear Sciences) ;
  • Turgut, Sevnur (Burdur Mehmet Akif Ersoy University, Graduate School of Natural Sciences, Department of Material Sciences Engineering, Istiklal Campus)
  • 투고 : 2021.12.30
  • 심사 : 2022.03.23
  • 발행 : 2022.08.01

초록

Magnetic biochar produced from pyrolysis of dairy cattle manure was used to develop an effective sorbent for arsenic purification from aqueous solution. Biomass and magnetized biomass were pyrolyzed in a tube furnace with 10 ℃/min heating rate at 450 ℃ under nitrogen flow of 100 cm3/min for 2 h. Biochars were characterized by SEM-EDX, BET, XDR, FTIR, TGA, zeta potential analysis. The resultant biochar and magnetic biochar were opposed to 50-100-500 ppm As(V) laden aqueous solution. Adsorption experiments were performed by using ASTM 4646-03 batch method. The effects of concentration, pH, temperature and stirring rate on adsorption were evaluated. As(V) was successfully removed from aqueous solution by magnetic biochar due to its highly porous structure, high aromaticity and polarity. The results suggest dairy cattle manure pyrolysis is a promising route for managing animal manure and producing a cost effective biosorbent for efficient immobilization of arsenic in aqueous solutions.

키워드

과제정보

Financial support provided by Burdur Mehmet Akif Ersoy University through a research project BAP-0579-YL-19 in aid of this research is gratefully acknowledged.

참고문헌

  1. Lata, S. and Samadder, S. R., "Removal of Arsenic from Water Using Nano Adsorbents and Challenges: A Review," J. Environmental Management, 166, 387-406(2016). https://doi.org/10.1016/j.jenvman.2015.10.039
  2. Viraraghavan, T., Subramanian, K. S. and Aruldoss, J. A., "Arsenic in Drinking Water Problems and Solutions," Water Sci. Technol., 40, 69-76(1999).
  3. Singh, R., Singh, S., Parihar, P., Singh, V. P. and Prasad, S. M., "Arsenic Contamination, Consequences and Remediation Techniques: A Review," Ecotox. Environ. Safe., 112, 247-270(2015). https://doi.org/10.1016/j.ecoenv.2014.10.009
  4. Mandal, B. K. and Suzuki, K. T., "Arsenic Around The World: A Review," Talanta, 58, 201-235(2002). https://doi.org/10.1016/S0039-9140(02)00268-0
  5. Xue, Q., Ran, Y., Tan, Y., Peacock, C. L. and Du, H., "Arsenite and Arsenate Binding to Ferrihydrite Organo-mineral Coprecipitate: Implications for Arsenic Mobility and Fate in Natural Environments," Chemosphere, 224, 103-110(2019). https://doi.org/10.1016/j.chemosphere.2019.02.118
  6. Garelick, H., Jones, H., Dybowska, A. and Valsami-Jones, E., "Arsenic Pollution Sources," Rev. Environ. Contam. Toxicol., 197, 17-60(2008).
  7. Smith, E., Naidu, R. and Alston, A., Chemistry of Inorganic Arsenic in Soils," J. Environ. Qual., 31, 557-563(2002). https://doi.org/10.2134/jeq2002.5570
  8. He, R., Peng, Z., Lyu, H., Huang, H., Nan, Q. and Tang, J., "Synthesis and Characterization of An Iron-Impregnated Biochar for Aqueous Arsenic Removal," Sci. Total Environ., 612, 1177-1186(2018). https://doi.org/10.1016/j.scitotenv.2017.09.016
  9. Matschullat, J., "Arsenic in the Geosphere - A Review," Sci. Total Environ., 249, 297-312(2000). https://doi.org/10.1016/S0048-9697(99)00524-0
  10. Jia, Y., Xu, L., Fang, Z. and Demopoulos, G. P., "Observation of Surface Precipitation of Arsenate on Ferrihydrite," Environ. Sci. Technol., 40(10), 3248-3253(2006). https://doi.org/10.1021/es051872+
  11. Leupin, O. X. and Hug, S. J., "Oxidation and Removal of Arsenic (III) from Aerated Groundwater by Filtration through Sand and Zero-valent Iron," Water Res., 39(9), 1729-1740(2005). https://doi.org/10.1016/j.watres.2005.02.012
  12. Kim, J. and Benjamin, M. M., "Modeling a Novel Ion Exchange Process for Arsenic and Nitrate Removal," Water Res., 38(8), 2053-2062(2004). https://doi.org/10.1016/j.watres.2004.01.012
  13. Mukherjee, A., Zimmerman, A. R. and Harris, W., "Surface Chemistry Variations among A Series of Laboratory-Produced Biochars," Geoderma, 163, 247-255(2011). https://doi.org/10.1016/j.geoderma.2011.04.021
  14. Gholami, M. M., Mokhtari, M. A., Aameri, A. and Fard, M. R. A., "Application of Reverse Osmosis Technology for Arsenic Removal from Drinking Water," Desalination, 200, 725-727(2006). https://doi.org/10.1016/j.desal.2006.03.504
  15. Marques Neto, J. D. O., Bellato, C. R., Milagres, J. L., Pessoa, K. D. and Alvarenga, E. S. D., "Preparation and Evaluation of Chitosan Beads Immobilized with Iron (III) for the Removal of As (III) and As (V) from Water," J. Braz. Chem. Soc., 24(1), 121-132(2013). https://doi.org/10.1590/S0103-50532013000100017
  16. Lin, L, Qui, W., Wang, D., Huang, Q., Song, Z. and Chaud, H. W., "Arsenic Removal in Aqueous Solution by a Novel Fe-Mn Modified Biochar Composite: Characterization and Mechanism," Ecotoxicology and Environmental Safety, 144, 514-21(2017). https://doi.org/10.1016/j.ecoenv.2017.06.063
  17. Qiu, W. and Zheng, Y., "Arsenate Removal from Water by An Alumina-Modified Zeolite Recovered from Fly Ash," J. Hazard. Mater., 148(3), 721-726(2007). https://doi.org/10.1016/j.jhazmat.2007.03.038
  18. Velazquez-Pena, C. G. Solache-Rios, Olguin, and M. T. and Fall, C., "As(V) Sorption by Different Natural Zeolite Frameworks Modified with Fe, Zr and FeZr," Microporous and Mesoporous Materials, 273, 133-141(2019). https://doi.org/10.1016/j.micromeso.2018.07.003
  19. Shi, J., Zhao, Z., Zhou, J. and Liang, Z., "Enhanced Adsorption of As(III) on Chemically Modified Activated Carbon Fibers," Appl Water Sci., 9, 41(2019). https://doi.org/10.1007/s13201-019-0919-7
  20. Banerjee, K., Amy, G. L., Prevost, M., Nour, S., Jekel, M., Gallagher, P. M. and Blumenschein, C. D., "Kinetic and Thermodynamic Aspects of Adsorption of Arsenic onto Granular Ferric Hydroxide (GFH)," Water Res., 42(13), 3371-3378(2008). https://doi.org/10.1016/j.watres.2008.04.019
  21. Tan, X. F., Zeng, Y. G., Wang, X., Hu, X., Gu, Y. and Yang, Z., "Application of Biochar for The Removal of Pollutants from Aqueous Solutions," Chemosphere, 125, 70-85(2015). https://doi.org/10.1016/j.chemosphere.2014.12.058
  22. Thines, K. R., Abdullah, E. C., Mubarak, N. M. and Ruthiraan, M., "Synthesis of Magnetic Biochar from Agricultural Waste Biomass to Enhancing Route for Waste Water and Polymer Application: A Review," Renewable and Sustainable Energy Reviews, 67, 257-76(2017). https://doi.org/10.1016/j.rser.2016.09.057
  23. Li, H., Dong, X., Silva, E. B., Oliveira, L. M., Chen, Y. and Ma, L. Q., "Mechanisms of Metal Sorption by Biochars," Chemosphere, 178, 466-78(2017). https://doi.org/10.1016/j.chemosphere.2017.03.072
  24. Zhao, Y., Feng, D., Zhang, Y., Tang, W., Meng, S., Guo, Y. and Sun, S., "Migration of Alkali and Alkaline Earth Metallic Species and Structure Analysis of Sawdust Pyrolysis Biochar," Korean Chem. Eng. Res., 54(5), 659-664(2016). https://doi.org/10.9713/KCER.2016.54.5.659
  25. Kaushal, I., Maken, S., Sharma, A. K., "SnO2 Mixed Banana Peel Derived Biochar Composite for Supercapacitor Application," Korean Chem. Eng. Res., 56(5), 694-704(2018). https://doi.org/10.9713/KCER.2018.56.5.694
  26. Regmi, P., Garcia Moscoso, J. L., Kumar, S., Cao, X., Mao, J. and Schafran, G., "Removal of Copper and Cadmium from Aqueous Solution using Switchgrass Biochar Produced via Hydrothermal Carbonization Process," J. of Environmental Management, 109, 61-9(2012). https://doi.org/10.1016/j.jenvman.2012.04.047
  27. Pellera, F. M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J. Y. and Gidarakos, E., "Adsorption of Cu(II) Ions from Aqueous Solutions on Biochars Prepared from Agricultural By-products," J. of Environmental Management, 96, 35-42(2012). https://doi.org/10.1016/j.jenvman.2011.10.010
  28. Tong, X. J., Li, J. Y., Yuan, J. H. and Xu, R. K., "Adsorption of Cu(II) by Biochars Generated from Three Crop Straws," Chemical Engineering J., 172, 828-34(2011). https://doi.org/10.1016/j.cej.2011.06.069
  29. Baig, S. A., Zhu, J., Muhammad, N. and Sheng, X. X., "Effect of Synthesis Methods on Magnetic Kans Grass Biochar for Enhanced As (III,V) Adsorption from Aqueous Solutions," Biomass and Bioenergy, 71, 299-310(2014). https://doi.org/10.1016/j.biombioe.2014.09.027
  30. Agrafioti, E., Kalderis, D. and Diamadopoulos, E., "Arsenic and Chromium Removal from Water using Biochars Derived from Rice Husk," Organic Solid Wastes and Sewage Sludge, 133, 309-14(2014).
  31. Wang, S., Gao, B., Zimmermann, A. M., Li, Y., Ma, L., Harris, W. G. and Migliaccio, K. W., "Physicochemical and Sorptive Properties of Biochars Derived from Woody and Herbaceous Biomass," Chemosphere, 134, 257-62(2015). https://doi.org/10.1016/j.chemosphere.2015.04.062
  32. Zhang, M. and Gao, B., "Removal of Arsenic, Methylene Blue, and Phosphate by Biochar/AlOOH Nanocomposite," Chemical Engineering J., 226, 286-292(2013). https://doi.org/10.1016/j.cej.2013.04.077
  33. Li, Y., Mosa, A., Zimmerman, A. R., Ma, L. Q., Harris, W. G. and Migliaccio, K. W., "Manganese Oxide-Modified Biochars: Preparation, Characterization, and Sorption of Arsenate and Lead," Bioresource Technology, 181, 13-17(2015). https://doi.org/10.1016/j.biortech.2015.01.044
  34. Liu, Z., Zhang, F. S. and Sasai, R., "Arsenate Removal from Water Using Fe3O4-Loaded Activated Carbon Prepared from Waste Biomass," Chemical Engineering J., 160, 57-62(2010). https://doi.org/10.1016/j.cej.2010.03.003
  35. Aredes, S., Klein, B. and Pawlik, M., "The Removal of Arsenic from Water Using Natural Iron Oxide Minerals, J. of Cleaner Production, 29-30, 208-13(2012). https://doi.org/10.1016/j.jclepro.2012.01.029
  36. Wang, S., Gao, B., Zimmermann, A. M., Li, Y., Ma, L., Harris, W. G. and Migliaccio, K. W., "Removal of Arsenic by Magnetic Biochar Prepared from Pinewood and Natural Hematite," Bioresource Technology, 175, 391-5(2015). https://doi.org/10.1016/j.biortech.2014.10.104
  37. Zhang, M., Gao,B., Varnoosfaderani, S., Hebard, A., Yao, Y. and Inyang, M., "Preparation and Characterization of a Novel Magnetic Biochar for Arsenic Removal," Bioresource Technology, 130, 457-62(2013). https://doi.org/10.1016/j.biortech.2012.11.132
  38. Kaygusuz, K. and Sekerci, T., "Biomass for Efficiency and Sustainability Energy Utilization in Turkey," J. Eng. Res. App. Sci., 5, 332-341(2016).
  39. Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E. and Ok, Y. S., "Effects of Pyrolysis Temperature on Soybean Stover and Peanut Shell-Derived Biochar Properties and TCE Adsorption in Water," Bioresource Technology, 118, 536-544(2012). https://doi.org/10.1016/j.biortech.2012.05.042
  40. Agrafioti, E., Kalderis, D. and Diamadopoulus, E., "Ca and Fe Modified Biochars as Adsorbents of Arsenic and Chromium in Aqueous Solutions," J. of Environmental Management, 146, 444-450(2014). https://doi.org/10.1016/j.jenvman.2014.07.029
  41. Jin, J. W., Li, Y. A., Zhang, J. Y., Wu, S. C., Cao, Y. C., Liang, P., Zhang, J., Wong, M. H., Wang, M. Y., Shan, S. D. and Christie, P., "Influence of Pyrolysis Temperature on Properties and Environmental Safety of Heavy Metals in Biochars Derived from Municipal Sewage Sludge," J. of Hazardous Materials, 320, 417-426(2016). https://doi.org/10.1016/j.jhazmat.2016.08.050
  42. Joseph, S. D., Downie, A., Crosky, A., Lehman, J. and Munroe, P., "Biochar for Carbon Sequestration, Reduction of Greenhouse Gas Emissions and Enhancement of Soil Fertility; A Review of the Materials Science. Proceedings of the Australian Combustion Symposium (2007).
  43. Triolo, J. M., Ward, A. J., Pedersen, L. and Sommer, S. G., in Matovic M. D. (Ed.), Characteristics of Animal Slurry as a Key Biomass for Biogas Production in Denmark, Biomass Now-Sustainable Growth and Use, IntechOpen, New York (2013).
  44. Samsuri, A. W., Sadegh-Zadeh, F. and Seh-Bardan, B. J., "Adsorption of As(III) and As(V) by Fe Coated Biochars and Biochars Produced from Empty Fruit Bunch and Rice Husk," J. of Environmental Chemical Engineering, 1, 981-988(2013). https://doi.org/10.1016/j.jece.2013.08.009
  45. Inyang, M., Gao, B., Zimmerman, A., Zhang, M. and Chen, H., "Synthesis, Characterization, and Dye Sorption Ability of Carbon Nanotube-Biochar Nanocomposites," Chem. Eng. J., 236, 39-46(2014). https://doi.org/10.1016/j.cej.2013.09.074
  46. Namduri, H. and Nasrazadani, S., Quantitative Analysis of Iron Oxides Using Fourier Transform Infrared Spectrophotometry," Corros. Sci., 50, 2493-2497(2008). https://doi.org/10.1016/j.corsci.2008.06.034
  47. Akyurek, Z., "Sustainable Valorization of Animal Manure and Recycled Polyester: Co-pyrolysis Synergy," Sustainability, 11(8), 2280(2019). https://doi.org/10.3390/su11082280
  48. Tang, J., Huang, Y., Gong, Y., Lyu, H., Wang, Q. and Ma, J., "Preparation of a Novel Graphen Oxide/Fe-Mn Composite and Its Application for Aqueous Hg(II) Removal," J. of Hazardous Materials, 316, 151-158(2016). https://doi.org/10.1016/j.jhazmat.2016.05.028
  49. Yang, Y., Lin, X., Wei, B., Zhao, Y. and Wang, J., "Evaluation of Adsorption Potential of Bamboo Biochar for Metal-Complex Dye: Equilibrium, Kinetics and Artificial Neural Network Modeling," Int. J. Environ. Sci. Technol., 11, 1093-1100(2014). https://doi.org/10.1007/s13762-013-0306-0
  50. He, R., Peng, Z., Lyu H., Huang, H., Nan, Q. and Tang, J., "Synthesis and Characterization of An Iron-Impregnated Biochar for Aqueous Arsenic Removal," Science of the Total Environment, 612, 1177-1186(2018). https://doi.org/10.1016/j.scitotenv.2017.09.016
  51. Vitela-Rodriguez, A. V. and Rangel-Mendez, J. R., "Arsenic Removal by Modified Activated Carbons with Iron Hydro(oxide) Nanoparticles," J. Environ. Manag., 114, 225-231(2013). https://doi.org/10.1016/j.jenvman.2012.10.004
  52. Chang, Q., Lin, W. and Ying, W. C., "Preparation of Iron-Impregnated Granular Activated Carbon for Arsenic Removal from Drinking Water," J. Hazard. Mater., 184, 515-522(2010). https://doi.org/10.1016/j.jhazmat.2010.08.066
  53. Pehlivan, E., Tran, T., Ouedraogo,W., Schmidt, C., Zachmann, D. and Bahadir, M., "Removal of As (V) from Aqueous Solutions by Iron Coated Rice Husk," Fuel Process. Technol. 106, 511-517(2013). https://doi.org/10.1016/j.fuproc.2012.09.021
  54. Duan, X., Zhang, C., Srinivasakannan, C. and Wang, X., "Waste Walnut Shell Valorization to Iron Loaded Biochar and Its Application to Arsenic Removal," Resource-Efficient Technologies, 3, 29-36(2017). https://doi.org/10.1016/j.reffit.2017.01.001
  55. Lata, S., Singh, P. K. and Samadder, S. R., "Regeneration of Adsorbents and Recovery of Heavy Metals: A Review," Int. J. Environ. Sci. Technol., 12, 1461-78(2015). https://doi.org/10.1007/s13762-014-0714-9
  56. Wang, S. Tang, Y. Chen, C., Wu, J., Huang, Z., Mo, Y., Zhang, K. and Chen, J., "Regeneration of Magnetic Biochar Derived from Eucalyptus Leaf Residue for Lead(II) Removal," Bioresource Technol., 186, 360-4(2015). https://doi.org/10.1016/j.biortech.2015.03.139