DOI QR코드

DOI QR Code

Compressive Properties of 3D Printed TPU Samples with Various Infill Conditions

채우기 조건에 따른 3D 프린팅 TPU 샘플의 압축 특성

  • Jung, Imjoo (Dept. of Fashion and Textiles, Dong-A University) ;
  • Lee, Sunhee (Dept. of Fashion Design, Dong-A University)
  • 정임주 (동아대학교 의상섬유학과) ;
  • 이선희 (동아대학교 패션디자인학과)
  • Received : 2022.01.10
  • Accepted : 2022.02.24
  • Published : 2022.06.30

Abstract

This study investigated process conditions for 3D printing through manufacturing thermoplastic polyurethane (TPU) samples under different infill conditions. Samples were prepared using a fused deposition modeling 3D printer and TPU filament. 12 infill patterns were set (2D: grid, lines, zigzag; 3D: triangles, cubic, cubic subdivision, octet, quarter cubic; 3DF: concentric, cross 3D, cross, honeycomb), with 3 infill densities (20%, 50%, 80%). Morphology, actual time/weight and compressive properties were analyzed. In morphology: it was found that, as infill density increased, the increase rate of the number of units rose for 2D and fell for 3DF. Printing time varied with the number of nozzle movements. In the 3DF case, the number of nozzle movements increased rapidly with infill density. Sample weight increased similarly. However, where the increase rate of the number of units was low, sample weight was also low. In compressive properties: compressive stress increased with infill density and stress was high for the patterns with layers of the same shape.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2021R1A4A1022059).

References

  1. Alafaghani, A., & Qattawi, A. (2018). Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method. Journal of Manufacturing Processes, 36, 164-174. doi:10.1016/j.jmapro.2018.09.025
  2. Choi, S. C., Lee, Y. H., & Chun, T.-I. (1992). 纖維測定法 [A method of fiber measurement]. Seoul: Soohaksa.
  3. Dudescu, C., & Racz, L. (2017). Effects of raster orientation, infill rate and infill pattern on the mechanical properties of 3D printed materials. Acta Universitatis Cibiniensis - Technical Series, 69(1), 23-30. doi:10.1515/aucts-2017-0004
  4. Dwamena, M. (2020, May 5). What is the strongest infill pattern? 3D Printerly. Retrieved from https://3dprinterly.com/what-is-the-strongest-infill-pattern/
  5. Ehrmann, G., & Ehrmann, A. (2021a). Investigation of the shapememory properties of 3D printed PLA structures with different infills. Polymers, 13(1):164. doi:10.3390/polym13010164
  6. Ehrmann, G., & Ehrmann, A. (2021b). Pressure orientation-dependent recovery of 3D-printed PLA objects with varying infill degree. Polymers, 13(8):1275. doi:10.3390/polym13081275
  7. Fekete, I., Ronkay, F., & Lendvai, L. (2021). Highly toughened blends of poly(lactic acid) (PLA) and natural rubber (NR) for FDM-based 3D printing applications: The effect of composition and infill pattern. Polymer Testing, 99:107205. doi:10.1016/j.polymertesting.2021.107205
  8. Fermandez-Vicente, M., Calle, W., Ferrandiz, S., & Conejero, A. (2016). Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Printing and Additive Manufacturing, 3(3), 183-192. doi:10.1089/3dp.2015.0036
  9. Fornells, E., Murray, E., Waheed, S., Morrin, A., Diamond, D., Paull, B., & Breadmore, M. (2020). Integrated 3D printed heaters for microfluidic applications: Ammonium analysis within environmental water. Analytica Chimica Acta, 1098, 94-101. doi:10.1016/j.aca.2019.11.025
  10. Fuh, Y. K., Wang, B. S., & Tsai, C.-Y. (2017). Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Scientific Reports, 7(1):6759. doi:10.1038/s41598-017-07360-z
  11. Hassan, M. R., Jeon, H. W., Kim G., & Park, K. (2021). The effects of infill patterns and infill percentages on energy consumption in fused filament fabrication using CFR-PEEK. Rapid Prototyping Journal, 27(10), 1886-1899. doi:10.1108/RPJ-11-2020-0288
  12. Hmeidat, N. S., Brown, B., Jia, X., Vermaak, N., & Compton, B. (2021). Effects of infill patterns on the strength and stiffness of 3D printed topologically optimized geometries. Rapid Prototyping Journal, 27(8), 1467-1479. doi:10.1108/RPJ-11-2019-0290
  13. Jung, I., & Lee, S. (2021). Effect of surface roughness of fabrics on tensile properties of 3D printing auxetic re-entrant pattern/textile composites. Textile Science and Engineering, 58(4), 167-176. doi:10.12772/TSE.2021.58.167
  14. Kabir, S., Kim, H., & Lee, S. (2020). Characterization of 3D printed auxetic sinusoidal patterns/nylon composite fabrics. Fibers and Polymers, 21(6), 1372-1381. doi:10.1007/s12221-020-9507-6
  15. Kabir, S., & Lee, S. (2020). Study of shape memory and tensile property of 3D printed sinusoidal sample/nylon composite focused on various thicknesses and shape memory cycles, Polymers, 12(7):1600. doi:10.3390/polym12071600
  16. Kim, H., Kabir, S., & Lee, S. (2021). Mechanical properties of 3D printed re-entrant pattern/neoprene composite textile by pattern tilting angle of pattern. Journal of the Korean Society of Clothing and Textiles, 45(1), 106-122. doi:10.5850/JKSCT.2021.45.1.106
  17. Kim, H., & Lee, S. (2020). Mechanical properties of 3D printed re-entrant pattern with various hardness types of TPU filament manufactured through FDM 3D printing. Textile Science and Engineering, 57(3), 166-176. doi:10.12772/TSE.2020.57.166
  18. Korean Agency for Technology and Standards. (2018, December 14). KS M ISO604 Plastics - Determination of compressive properties. Korean Standards & Certifications. Retrieved from https://www.e-ks.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=919&topMenuId=502&upperMenuId=503&ksNo=KSMISO604&tmprKsNo=KSMISO604&reformNo=03
  19. Koske, D., & Ehrmann, A. (2021). Infill designs for 3D-printed shape-memory objects. Technologies, 9(2):29. doi:10.3390/technologies9020029
  20. Lee, H., Eom, R.-i., & Lee, Y. (2019). Evaluation of the mechanical properties of porous thermoplastic polyurethane obtained by 3D printing for protective gear. Advances in Materials Science and Engineering, 2019:5838361. doi:10.1155/2019/5838361
  21. Lee, S. (2020). 3D printing lace ; DIY project. Busan: Dong-A University Press.
  22. Mishra, P. K., Senthil, P., Adarsh, S., & Anoop, M. S. (2021). An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts. Composites Communications, 24:100605. doi:10.1016/j.coco.2020.100605
  23. Nace, S. E., Tiernan, J., Holland, D., & Annaidh, A. N. (2021). A comparative analysis of the compression characteristics of a thermoplastic polyurethane 3D printed in four infill patterns for comfort applications. Rapid Prototyping Journal, 27(11), 24-36. doi:10.1108/RPJ-07-2020-0155
  24. Parpala, R. C., Popescu, D., & Pupaza, C. (2021). Infill parameters influence over the natural frequencies of ABS specimens obtained by extrusion-based 3D printing. Rapid Prototyping Journal, 27(6), 1273-1285. doi:10.1108/RPJ-05-2020-0110
  25. Rodriguez-Parada, L., de la Rosa, S., & Mayuet, P. F. (2021). Influence of 3D-printed TPU properties for the design of elastic products. Polymers, 13(15):2519. doi:10.3390/polym13152519
  26. Ursini, C., & Collini, L. (2021). FDM layering deposition effects on mechanical response of TPU lattice structures. Materials, 14(19):5645. doi:10.3390/ma14195645
  27. Xiang, D., Zhang, X., Li, Y., Harkin-Jones, E., Zheng, Y., Wang, L., ... Wang, P. (2019). Enhanced performance of 3D printed highly elastic strain sensors of carbon nanotube/thermoplastic polyurethane nanocomposites via non-covalent interactions. Composites Part B: Engineering, 176:107250. doi:10.1016/ j.compositesb.2019.107250
  28. Yarwindran, M., Sa'aban, N. A., Ibrahim, M., & Periyasamy, R. (2016). Thermoplastic elastomer infill pattern impact on mechanical properties 3D printed customized orthotic insole. ARPN Journal of Engineering and Applied Sciences, 11(10), 6519-6524.