DOI QR코드

DOI QR Code

과황산계 산화제에 따른 폐LiFePO4 양극재에서 리튬의 침출 효과와 선택적 회수에 대한 연구

A Study on the Leaching Effect and Selective Recovery of Lithium Element by Persulfate-based Oxidizing Agents from Waste LiFePO4 Cathode

  • 김희선 (고등기술연구원 신소재공정센터) ;
  • 김대원 (고등기술연구원 신소재공정센터) ;
  • 장대환 (고등기술연구원 신소재공정센터) ;
  • 김보람 (고등기술연구원 신소재공정센터) ;
  • 진연호 (고등기술연구원 신소재공정센터) ;
  • 채병만 ((주)케이엠씨) ;
  • 이상우 ((주)케이엠씨)
  • Kim, Hee-Seon (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Kim, Dae-Weon (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Jang, Dae-Hwan (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Kim, Boram (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Jin, Yun-Ho (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Chae, Byung-Man (KMC Co., LTD) ;
  • Lee, Sang-Woo (KMC Co., LTD)
  • 투고 : 2022.07.27
  • 심사 : 2022.08.04
  • 발행 : 2022.08.31

초록

폐LiFePO4 배터리의 양극재에는 리튬이 약 4% 함유되어 있으며, 함유된 원소의 재활용은 환경적인 문제뿐만 아니라 자원순환의 관점에서 중요하다. 폐LiFePO4 양극재 분말에 함유된 리튬을 선택적으로 침출하기 위하여 3종류의 과황산계 산화제 [과황산나트륨(Na2S2O8), 과황산칼륨(K2S2O8), 그리고 과황산암모늄((NH4)2S2O8)]를 사용하여 각 성분의 침출율 및 분말특성을 비교 분석하였다. 침출 시 광액농도를 변수로 두고 각 조건별로 3시간 동안 침출을 진행하였으며, 얻어진 침출용액은 ICP 성분분석을 시행하여 침출율을 계산하였다. 본 연구에서 사용된 모든 과황산계 산화제 종류에서 92% 이상의 리튬 침출율을 보였다. 특히 과황산암모늄의 산화제를 사용하여 침출하였을 경우, 50 g/L의 광액농도 및 1.1 몰 비의 산화제 농도에서 약 93.3%의 가장 높은 리튬의 침출율을 보였다.

In waste lithium iron phosphate (LFP) batteries, the cathode material contains approximately 4% lithium. Recycling the constituent elements of batteries is important for resource circulation and for mitigating the environmental pollution. Li contained in the waste LFP cathode powder was selectively leached using persulfate-based oxidizing agents, such as sodium persulfate, potassium persulfate, and ammonium persulfate. Leaching efficiency and waste LFP powder properties were compared and analyzed. Pulp density was used as a variable during leaching, which was performed for 3 h under each condition. The leaching efficiency was calculated using the inductively coupled plasma (ICP) analysis of the leachate. All types of persulfate-based oxidizing agents used in this study showed a Li leaching efficiency over 92%. In particular, when leaching was performed using (NH4)2S2O8, the highest Li leaching percentage of 93.3% was observed, under the conditions of 50 g/L pulp density and an oxidizing agent concentration of 1.1 molar ratio.

키워드

과제정보

본 연구는 2022년도 산업통상자원부의 재원으로 한국에너지기술평가원의 지원을 받아 수행한 연구 과제입니다(재생자원의 저탄소 산업 원료화 기술개발 사업 No. 20229A10100100).

참고문헌

  1. Xie, J., Lu, Y.-C., 2020 : A retrospective on lithium-ion batteries, Nature Communications, 11(1), pp.2499.
  2. Kim, H., 2022 : Electric vehicle battery recycling industry trends and implications, pp.4-38, 11th Edition, Institute for International Trade, South Korea
  3. Zeng, X., Li, J., Liu, L., 2015 : Solving spent lithium-ion battery problems in China: Opportunities and challenges, Renewable and Sustainable Energy Reviews, 52, pp.1759-1767. https://doi.org/10.1016/j.rser.2015.08.014
  4. Natarajan, S., Aravindan, V., 2018 : Recycling strategies for spent Li-ion battery mixed cathodes, ACS Energy Letters, 3(9), pp.2101-2103. https://doi.org/10.1021/acsenergylett.8b01233
  5. Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., et al., 1997 : Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. Journal of the Electrochemical Society, 144(5), pp.1609.
  6. Zeng, X., Li, M., Abd El-Hady, D., et al., 2019 : Commercialization of lithium battery technologies for electric vehicles, Advanced Energy Materials, 9(27), pp.1900161.
  7. Jing, Q., Zhang, J., Liu, Y., et al., 2020 : Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method, ACS Sustainable Chemistry & Engineering, 8(48), pp.17622-17628. https://doi.org/10.1021/acssuschemeng.0c07166
  8. Park, E., Han, C., Son, S. H., et al., 2022 : Overview on Pyrometallurgical Recycling Process of Spent Lithium-ion Battery, Resources Recycling, 31(3), pp.27-39. https://doi.org/10.7844/kirr.2022.31.3.27
  9. Joo, S., Kim, D.-G., Byun, S.-Y., et al., 2021 : A Study on the Synthesis Behavior of Lithium Hydroxide by Type of Precipitant for Lithium Sulfate Recovered from Waste LIB, Resources Recycling, 30(1), pp.44-52. https://doi.org/10.7844/KIRR.2021.30.1.44
  10. Kim, D. W., Park, J. R., Ahn, N. K., et al., 2019 : A review on the recovery of the lithium carbonate powders from lithium containing substances, J. of the Korean Crystal Growth and Crystal Technology, 29(3), pp.91-106.
  11. Yang, J. K., Jin, Y. H., Yang, D. H., et al., 2019 : A study on the reaction of carbonation in the preparation of lithium carbonate powders, J. of the Korean Crystal Growth and Crystal Technology, 29(5), pp.222-228.
  12. Jin, Y. H., Kim, B. R., Kim, D. W., 2021 : Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water, Clean Technol., 27(1), pp.33-38.
  13. Kim, B. R., Kim, D. W., Kim, T. H., et al., 2022 : A study on the synthesis of a cathode active material precursor from a waste lithium secondary battery, J. of the Korean Crystal Growth and Crystal Technology, 32(2), pp.61-67.
  14. Jung, Y. J., Park, S. C., Kim, Y. H., et al., 2021 : A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batreries Cell Powder, Resources Recycling, 30(6), pp.45-52.
  15. Yu, X., Yu, S., Yang, Z., et al., 2022 : Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes, Energy Storage Materials, 51, pp.54-62. https://doi.org/10.1016/j.ensm.2022.06.017
  16. Moon, H. S., Song, S. J., Tran, T. T., et al., 2022 : Separation of Co(II), Ni(II), and Cu(II) from Sulfuric Acid Solution by Solvent Extraction, Resources Recycling, 31(1), pp.21-28. https://doi.org/10.7844/KIRR.2022.31.1.21
  17. Chen, J., Li, Q., Song, J., et al., 2016 : Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries, Green Chem., 18(8), pp.2500-2506. https://doi.org/10.1039/C5GC02650D
  18. Song, X., Hu, T., Liang, C., et al., 2017 : Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method, RSC Adv., 7(8), pp.4783-4790. https://doi.org/10.1039/C6RA27210J
  19. Li, X., Zhang, J., Song, D., et al., 2017 : Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries, J. Power Sources, 345, pp.78-84. https://doi.org/10.1016/j.jpowsour.2017.01.118
  20. Zhang, X., Xue, Q., Li, L., et al., 2016 : Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries, ACS Sustainable Chem. Eng., 4(12), pp.7041-7049. https://doi.org/10.1021/acssuschemeng.6b01948
  21. Li, H., Xing, S., Liu, Y., et al., 2017 : Recovery of Lithium, Iron, and Phosphorus from Spent LiFePO4 Batteries Using Stoichiometric Sulfuric Acid Leaching System, ACS Sustainable Chem. Eng., 5, pp.8017-8024. https://doi.org/10.1021/acssuschemeng.7b01594
  22. Cai, G., Fung, K. Y., Ng, K. M., 2014 : Process Development for the Recycle of Spent Lithium Ion Batteries by Chemical Precipitation, Ind. Eng. Chem. Res., 53(47), pp.18245-18259. https://doi.org/10.1021/ie5025326
  23. Mahandra, H., Ghahreman, A., 2021 : A sustainable process for selective recovery of lithium as lithium phosphate from spent LiFePO4 batteries, Resources, Conservation & Recycling, 175, pp.105883.
  24. Kumar, J., Shen, X., Li, B., et al., 2020 : Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4, Waste Management, 113, pp.32-40. https://doi.org/10.1016/j.wasman.2020.05.046
  25. Yang, Y., Meng, X., Cao, H., et al., 2018 : Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process, Green Chem, 20(13), pp.3121-3133. https://doi.org/10.1039/C7GC03376A
  26. Zhang, J., Hu, J., Liu, Y., et al., 2019 : Sustainable and Facile Method for the Selective Recovery of Lithium from Cathode Scrap of Spent LiFePO4 Batteries, ACS Sustain. Chem. Eng., 7(6), pp.5626-5631. https://doi.org/10.1021/acssuschemeng.9b00404
  27. Bian, D., Sun, Y., Li, S., et al., 2016 : A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers, Electrochimica Acta, 190, pp.134-140. https://doi.org/10.1016/j.electacta.2015.12.114
  28. Huang, Y., Han, G., Liu, J., et al., 2016 : A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process, Journal of Power Sources, 325, pp.555-564. https://doi.org/10.1016/j.jpowsour.2016.06.072
  29. Kumar, J., Shen, X., Li, B., et al., 2020 : Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4, Waste Management, 113, pp.32-40. https://doi.org/10.1016/j.wasman.2020.05.046
  30. Li, L., Bian, Y., Zhang, X., et al., 2019 : A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries, Waste Management, 85, pp.437-444. https://doi.org/10.1016/j.wasman.2019.01.012
  31. Fan, E., Li, L., Zhang, X., et al., 2018 : Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach, ACS Sustainable Chemistry & Engineering, 6(8), pp.11029-11035. https://doi.org/10.1021/acssuschemeng.8b02503
  32. Liu, K., Liu, L., Tan, Q., et al., 2021 : Selective extraction of lithium from a spent lithium iron phosphate battery by mechanochemical solid-phase oxidation, Green Chemistry, 23(3), pp.1344-1352. https://doi.org/10.1039/D0GC03683H
  33. Peng, D., Zhang, J., Zou, J., et al., 2021 : Closed-loop regeneration of LiFePO4 from spent lithium-ion batteries: A "feed three birds with one scone" strategy toward advanced cathode materials, Journal of Cleaner Production, 316, pp.128098.
  34. Tao, S., Li, J., Wang, L., et al., 2019 : A method for recovering Li3PO4 from spent lithium iron phosphate cathode material through high-temerature activation, Ionics, 25, pp.5643-5653. https://doi.org/10.1007/s11581-019-03070-w
  35. Ji, G., Ou, X., Zhao, R., et al., 2021 : Efficient utilization of scrapped LiFePO4 battery for novel synthesis of Fe2P2O7/C as candidate anode materals, Resources, Conservation and Reccling, 174, pp.105802.
  36. Janssen, Y., Santhanagopalan, D., Qian, D., et al., 2013 : Reciprocal Salt Flux Growth of LiFePO4 Single Crystals with Controlled Defect Concentrations, Chem. Mater., 25, pp.4574.
  37. Gangaja, B., Nair, S., Santhanagopalan, D., 2021 : Reuse, recycle, and regeneration of LiFePO4 cathode from spent lithium-ion batteries for rechargeable lithium-and sodium-ion batteries, ACS Sustainable Chemistry & Engineering, 9(13), pp.4711-4721. https://doi.org/10.1021/acssuschemeng.0c08487
  38. SIDS Initial Assessment Report For SIAM 20 Paris, 2005, pp.19-21, France
  39. Balej, J., 2013 : Mean Activity Coefficients of Peroxodisulfates in Saturated Solutions of the Conversion System 2NH-2Na-SO-SO-HO at 20℃ and 30℃, Acta Chimica Slovaca, 6(2), pp.163-167. https://doi.org/10.2478/acs-2013-0025
  40. Apelblat, A., Korin, E., Manzurola, E., 2001 : Solubilities and vapour pressures of saturated aqueous solutions of sodium peroxydisulfate and potassium peroxydisulfate, The Journal of Chemical Thermodynamics, 33(1), pp.61-69. https://doi.org/10.1006/jcht.2000.0780