DOI QR코드

DOI QR Code

Evaluating shrinkage and mechanical performances of polypropylene hybrid fibers reinforced mortar

  • Bendjillali, Khadra (Laboratory of Structures Rehabilitation and Materials, Faculty of Civil Engineering and Architecture, University Amar Telidji) ;
  • Bendjilali, Fatiha (Faculty of Civil Engineering and Architecture, Hassiba Benbouali University) ;
  • Krobba, Benharzallah (Laboratory of Structures Rehabilitation and Materials, Faculty of Civil Engineering and Architecture, University Amar Telidji)
  • 투고 : 2021.09.18
  • 심사 : 2022.03.07
  • 발행 : 2022.09.25

초록

The shrinkage and the mechanical properties of polypropylene hybrid fiber reinforced mortar PHFRM were investigated in this study. Mortars were prepared with limestone crushing sand, Portland cement and polypropylene hybrid fibers PHF. Two types of virgin fibers, having the same length (30 mm) were used for reinforcing test mortars, fibers in diameter of 0.45 mm, used by PLAST BROS factory of Bordj Bou Arreridj (Algeria) for the fabrication of brooms (for household cleaning) and fibers in diameter of 0.25 mm, available on the market, having multiple applications. In this investigation, it was aimed to study the total and autogenous shrinkage, the flexural and compressive strength of mortars based on hybrid fibers. As a result, PHF have negatively affected the mortar workability. However, shrinkage risk was reduced and coarser fibers (PF45) were most effective for reducing shrinkage risk. The mechanical performances and the ductility of PHFRM were also enhanced.

키워드

참고문헌

  1. Adnan, H.M. and Dawood, A.O. (2020), "Strength behavior of reinforced concrete beam using re-cycle of PET wastes as synthetic fibers", Case Studies Constr. Mater., 13, e00367. https://doi.org/10.1016/j.cscm.2020.e00367
  2. Akkaya, Y., Shah, S.P. and Ankenman, B. (2001), "Effect of fiber dispersion on multiple cracking of cement composites", J. Eng. Mech., 127(4), 311-316. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(311)
  3. Alamshahi, V., Taeb, A., Ghaffarzadeh, R. and Rezaee, M.A. (2012), "Effect of composition and length of PP and polyseter fibres on mechanical properties of cement based composites", Constr. Build. Mater., 36, 534-537. http://dx.doi.org/10.1016/j.conbuildmat.2012.06.005
  4. Alaskar, A., Alabduljabbar, H., Mustafa Mohamed, A., Alrshoudi, F. and Alyousef, R. (2021), "Abrasion and skid resistance of concrete containing waste polypropylene fibers and palm oil fuel ash as pavement material", Constr. Build. Mater., 282, 122681. https://doi.org/10.1016/j.conbuildmat.2021.122681
  5. Alwesabi, E.A.H., Abu Bakar, B.H., Alshaikh, I.M.H. and Akil, H.M. (2020), "Experimental investigation on mechanical properties of plain and rubberised concretes with steel-polypropylene hybrid fibre", Constr. Build. Mater., 233, 117194. https://doi.org/10.1016/j.conbuildmat.2019.117194
  6. Alwesabi, E.A.H., Abu Bakar, B.H., Alshaikh, I.M.H., Zeyad, A.M., Altheeb, A. and Alghamdi, H. (2021), "Experimental investigation on fracture characteristics of plain and rubberized concrete containing hybrid steel-polypropylene fiber", Structures, 33, 4421-4432. https://doi.org/10.1016/j.istruc.2021.07.011
  7. Banthia, N. and Gupta, R. (2006), "Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete", Cem. Concr. Res., 36(7), 1263-1267. https://doi.org/10.1016/j.cemconres.2006.01.010
  8. Belferrag, A., Kriker, A. and Khenfer. M.E. (2013), "Improvement of the compressive strength of mortar in the arid climates by valorization of dune sand and pneumatic waste metal fibers", Constr. Build. Mater., 40, 847-853. http://dx.doi.org/10.1016/j.conbuildmat.2012.11.079
  9. Bendjillali, K., Chemrouk, M. and Boulekbache, B. (2019), "Performances of cementitious mortars containing recycled synthetic fibres under hot-dry climate", Eur. J. Env. Civ. Eng., 23(10), 1235-1247. https://www.tandfonline.com/doi/full/10.1080/19648189.2017.1344152
  10. Bertelsen, I.M.G., Ottosen, L.M. and Fischer, G. (2019), "Quantitative analysis of the influence of synthetic fibres on plastic shrinkage cracking using digital image correlation", Constr. Build. Mater., 199, 124-137. https://doi.org/10.1016/j.conbuildmat.2018.11.268
  11. Bin, C., Ansheng, W. and Feng, F. (2020), "Bond behavior of PP fiber-reinforced cinder concrete after fire exposure", Comput. Concr., Int. J., 26(2), 115-125. https://doi.org/10.12989/cac.2020.26.2.115
  12. Blazy, J. and Blazy, R. (2021), "Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces", Case Studies Constr. Mater., 14, e00549. https://doi.org/10.1016/j.cscm.2021.e00549
  13. Borg, R.P., Baldacchino, O. and Ferrara, L. (2016), "Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete", Constr. Build. Mater., 108, 29-47. https://doi.org/10.1016/j.conbuildmat.2016.01.029
  14. Branch, J., Rawling, A., Hannant, D.J. and Mulheron, M. (2002), "The effect of fibers on the plastic shrinkage cracking of high strength concrete", Mater. Struct., 35(3), 189-194. https://doi.org/10.1007/BF02533588
  15. Caggiano, A., Gambarelli, S., Martinelli, E., Nistico, N. and Pepe, M. (2016), "Experimental characterization of the post-cracking response in hybrid steel/polypropylene fiber-reinforced concrete", Constr. Build. Mater., 125, 1035-1043. https://doi.org/10.1016/j.conbuildmat.2016.08.068
  16. Caggiano, A., Pepe, M., Xargay, H. and Martinelli, E. (2020), "Analytical modeling of the postcracking response observed in hybrid steel/polypropylene fiber-reinforced concrete", Polymers, 12(9), 1864. https://doi.org/10.3390/polym12091864
  17. Corinaldesi, V., Nardinocchi, A. and Donnini, J. (2016), "Study of physical and elasto-mechanical behaviour of fiber-reinforced concrete made of cement containing biomass ash", Eur. J. Env. Civ. Eng., 20(S1), s152-s168. https://doi.org/10.1080/19648189.2016.1246696
  18. Dawood, E.T. and Ramli, M. (2011), "High strength characteristics of cement mortar reinforced with hybrid fibres", Constr. Build. Mater, 25, 2240-2247. https://doi.org/10.1016/j.conbuildmat.2010.11.008
  19. Das, C.S., Dey, T., Dandapat, R., Mukharjee, B.B. and Kumar, J. (2018), "Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete", Constr. Build. Mater., 189, 649-659. https://doi.org/10.1016/j.conbuildmat.2018.09.036
  20. Eidan, J., Rasoolan, I., Poorveis, D. and Rezaeian, A. (2021), "Effect of polypropylene short fibers on energy absorption capacity and durability of concrete", J. Tes. Eval., 49(5), 3885-3898. https://doi.org/10.1520/JTE20190778
  21. Fan, J., Shen, A., Guo, Y., Zhao, M., Yang, X. and Wang, X. (2020), "Evaluation of the shrinkage and fracture properties of hybrid fiber-reinforced SAP modified concrete", Constr. Build. Mater., 256, 119491. https://doi.org/10.1016/j.conbuildmat.2020.119491
  22. Hameed, R., Turatsinze, A., Duprat, F. and Sellier, A. (2013), "Bond stress-slip behaviour of steel reinforcing bar embedded in hybrid fiber-reinforced concrete", KSCE. J. Civ. Eng., 17(7), 1700-1707. https://doi.org/10.1007/s12205-013-1240-x
  23. Hosseini, S.A. (2020), "Application of various types of recycled waste materials in concrete constructions", Adv. Concr. Constr., Int. J., 9(5), 479-489. http://dx.doi.org/10.12989/acc.2020.9.5.479
  24. Hussain, I., Ali, B., Akhtar, T., Jameel, M.S. and Raza, S.S. (2020), "Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene)", Case Studies Constr. Mater., 13, e00429. https://doi.org/10.1016/j.cscm.2020.e00429
  25. Hsie, M., Tu, C. and Song, P.S. (2008), "Mechanical properties of polypropylene hybrid fiber-reinforced concrete", Mater. Sci. Eng. A, 494(1-2), 153-157. https://doi.org/10.1016/j.msea.2008.05.037
  26. Islam, G.M.S. and Gupta, S.G. (2016), "Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete", Inter. J. Sust. Built. Env., 5(2), 345-354. https://doi.org/10.1016/j.ijsbe.2016.05.007
  27. Karthik, M.P. and Maruthachalam, D. (2015), "Experimental study on shear behaviour of hybrid fibre reinforced concrete beams", KSCE. J. Civ. Eng., 19(1), 259-264. https://doi.org/10.1007/s12205-013-2350-1
  28. Koksal, F., Yildirim, M.S., Benli, A. and Gencel, O. (2021), "Hybrid effect of micro-steel and basalt fibers on physico-mechanical properties and durability of mortars with silica fume", Case Studies Constr. Mater., 15, e00649. https://doi.org/10.1016/j.cscm.2021.e00649
  29. Krumins, J. and Zesers, A. (2015), "Experimental investigation of the fracture of hybrid-fiber-reinforced concrete", Mech. Compos. Mater., 51(1), 25-32. https://doi.org/10.1007/s11029-015-9473-z.
  30. Langlois, V., Fiorio, B., Beaucour, A.L., Cabrillac, R. and Gouvenot, D. (2007), "Experimental study of the mechanical behavior of continuous glass and carbon yarn-reinforced mortars", Constr. Build. Mater., 21(1), 198-210. https://doi.org/10.1016/j.conbuildmat.2005.06.048
  31. Madhumitha, G. and Kumar, B.N. (2020), "Performance studies on self compacted geo-polymer hybrid fiber reinforced concrete", In: Pancharathi R., Sangoju B., Chaudhary S. (eds), Adv. Sust. Constr. Mater, Lecture Notes in Civil Engineering, Springer, Singapore, 68, 21-32.
  32. Mallinadh, A.K., Sekhar Rao, T.C. and Ramana Rao, N.V. (2020), "Strength and behavior of hybrid fiberreinforced geopolymer concrete columns under uniaxial compression", Adv. Sust. Constr. Mater., In: Pancharathi R., Sangoju B., Chaudhary S. (eds), Lecture Notes in Civil Engineering, Springer, Singapore, 68, 3-19.
  33. Mamlouk, M.S. and Zaniewski, J.P. (2011), Materials for Civil and Construction Engineers, (3rd Edition), Upper Saddle River: Prentice Hall.
  34. Marthong, C. (2019), "Effect of waste cement bag fibers on the mechanical strength of concrete", Adv. Mater. Re.s, 8(2), 103-115. http://dx.doi.org/10.12989/amr.2019.8.2.103
  35. Mohajerani, A., Hui, S.Q., Mirzababaei, M., Arulrajah, A., Horpibulsuk, S., Kadir, A.A., Rahman, M. and Maghool, F. (2019), "Amazing types, properties, and applications of fibres in construction materials", Materials, 12(16), 2513. https://doi.org/10.3390/ma12162513
  36. Naraganti, S.R., Pannem, R.M.R. and Putta, J. (2019), "Impact resistance of hybrid fibre reinforced concrete containing sisal fibres", Ain Shams Eng. J., 10(2), 297-305. https://doi.org/10.1016/j.asej.2018.12.004
  37. Nuaklong, P., Chittanurak, J., Jongvivatsakul, P., Pansuk, W., Lenwari, A. and Likitlersuang, S. (2020), "Effect of hybrid polypropylene-steel fibres on strength characteristics of UHPFRC", Adv. Concr. Constr., Int. J., 10(1), 1-11. https://doi.org/10.12989/acc.2020.10.1.001
  38. Ozyurt, N., Mason, T.O. and Shah, S.P. (2007), "Correlation of fiber dispersion, rheology and mechanical performance of FRCs", Cem. Concr. Compos., 29(2), 70-79. https://doi.org/10.1016/j.cemconcomp.2006.08.006
  39. Pereira de Oliveira, L.A. and Castro-Gomes, J.P. (2011), "Physical and mechanical behaviour of recycled PET fibre reinforced mortar", Constr. Build. Mater., 25(4), 1712-1717. https://doi.org/10.1016/j.conbuildmat.2010.11.044
  40. Ramadoss, P. and Ngamani, K. (2008), "Tensile strength and durability characteristics of high-performance fiber reinforced concrete", Arab. J. Sci. Eng., 33(2B), 307-319. https://inis.iaea.org/search/search.aspx?orig_q=RN:41045167 1045167
  41. Ramesh, B., Eswari, S. and Sundararajan, T. (2020), "Flexural behaviour of glass fibre reinforced polymer (GFRP) laminated hybrid-fibre reinforced concrete beams", SN Appl. Sci., 2(204). https://doi.org/10.1007/s42452-020-1966-2
  42. Seshaiah, B., Srinivasa Rao, P. and Subba Rao, P. (2021), "Effect of mineral admixtures on the properties of steel fibre reinforced SCC proportioned using plastic viscosity and development of regression & ANN model", Comput. Concr., Int. J., 27(6), 523-535. http://dx.doi.org/10.12989/cac.2021.27.6.523
  43. Shaaban, I.G., Said, M., Khan, S.U., Eissa, M. and Elrashidy, K. (2021), "Experimental and theoretical behaviour of reinforced concrete beams containing hybrid fibres", Structures, 32, 2143-2160. https://doi.org/10.1016/j.istruc.2021.04.021
  44. Shaikh, F.U.A. and Taweel, M. (2015), "Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures", Adv. Concr. Constr., Int. J., 3(4), 283-293. http://dx.doi.org/10.12989/acc.2015.3.4.283
  45. Shi, F., Pham, T.M., Hao, H. and Hao, Y. (2020), "Post-cracking behaviour of basalt and macro polypropylene hybrid fibre reinforced concrete with different compressive strengths", Constr. Build. Mater., 262, 120108. https://doi.org/10.1016/j.conbuildmat.2020.120108
  46. Silva, E.R., Coelho, J.F. J. and Bordado, J.C. (2013), "Strength improvement of mortar composites reinforced with newly hybrid-blended fibres: Influence of fibres geometry and morphology", Constr. Build. Mater., 40, 473-480. https://doi.org/10.1016/j.conbuildmat.2012.11.017
  47. Sivakumar, A. and Santhanam, M. (2007), "A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete", Cem. Concr. Compos., 29(7), 575-581. https://doi.org/10.1016/j.cemconcomp.2007.03.005
  48. Smarzewski, P. (2019), "Analysis of failure mechanics in hybrid fibre-reinforced high-performance concrete deep beams with and without openings", Materials, 12(1), 101. https://doi.org/10.3390/ma12010101
  49. Soylev, T.A. and Ozturan, T. (2014), "Durability, physical and mechanical properties of fiber-reinforced concretes at low-volume fraction", Constr. Build. Mater., 73, 67-75. https://doi.org/10.1016/j.conbuildmat.2014.09.058
  50. Standards EN 196-1, (2005), Methods of Testing Cement-Part 1: Determination of Strength, BSI London, UK.
  51. Sun, Z. and Xu, Q. (2009), "Microscopic, physical and mechanical analysis of polypropylene fiber reinforced concrete", Mater. Sci. Eng. A., 527, 198-204. https://doi.org/10.1016/j.msea.2009.07.056
  52. Vandewalle, L. (2006), Hybrid Fiber Reinforced Concrete, In: KONSTA-GDOUTOS M.S. (eds) Measuring, Monitoring and Modeling Concrete Properties, Springer, Dordrecht, 77-82. https://doi.org/10.1007/978-1-4020-5104-3_9
  53. Yap, S.P., Alengaram, U.J. and Jumaat, M.Z. (2013), "Enhancement of mechanical properties in polypropylene and nylon fibre", Mater. Desig., 49, 1034-1041. https://doi.org/10.1016/j.matdes.2013.02.070
  54. Yildirim, S.T., Ekinci, C.E. and Findik, F. (2010), "Properties of hybrid fiber reinforced concrete under repeated impact loads", Russ. J. Nondestruct. Test, 46(7), 538-546. https://doi.org/10.1134/S1061830910070090
  55. Yousefieh, N., Joshaghani, A., Hajibandeh, E. and Shekarchi, M. (2017), "Influence of fibers on drying shrinkage in restrained concrete", Constr. Build. Mater., 148, 833-845. https://doi.org/10.1016/j.conbuildmat.2017.05.093
  56. Zhang, C., Liu, J., Han, S. and Hua, Y. (2021), "Pore pressure and spalling in fire-exposed high-strength selfconsolidating concrete reinforced with hybrid fibres", Eur. J. Env. Civ. Eng., 25(2), 337-367. https://doi.org/10.1080/19648189.2018.1530142
  57. Zhou, Y., Xiao, Y., Gu, A. and Lu, Z. (2018), "Dispersion, workability and mechanical properties of different steel-microfiber-reinforced concretes with low fiber content", Sustainability, 10(7), 2335. https://doi.org/10.3390/su10072335