DOI QR코드

DOI QR Code

The Association between HbA1c and the Biological Exposure Index for Heavy Metals in Community

지역사회 주민의 당화혈색소와 중금속 생체표지자와의 관련성

  • Min, Young-Sun (Department of Occupational and Environmental Medicine, Soonchunhyang University Cheonan Hospital) ;
  • Lee, Kwan (Department of Preventive Medicine, Dongguk University College of Medicine)
  • 민영선 (순천향대 천안병원 직업환경의학과) ;
  • 이관 (동국의대 예방의학교실)
  • Received : 2022.09.20
  • Accepted : 2022.09.22
  • Published : 2022.09.30

Abstract

Objectives: The prevalence of diabetes mellitus was approximately 16% in populations of over age 30 years, and deaths from diabetes mellitus became the sixth most prevalent cause of death by disease. To assess the relationship between HbA1c and heavy metal level in blood and urine, targeted residents were evaluated in a vast steel industrial complex. Methods: We selected 414 subjects for analysis after applying the following exclusion criterion: 18 persons with diabetes mellitus. They took part in a questionnaire survey and underwent blood and urinary assessments. HbA1c and lead (Pb) level were measured in blood and, cadmium (Cd), inorganic arsenic (iAs) and mercury (Hg) were evaluated in urine. Two subgroups were divided by HbA1c 6.5%. Each subgroup was divided by 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th and 90th percentile levels of biological exposure index of the heavy metals for logistic regression. Results: Odd ratios have a tendency to increase as they go from the 90th to the 10th percentile of cadmium. However, lead, arsenic and mercury did not have significant relationships with HbA1c. In correction of age, region, gender and smoking history, a higher distribution in the subgroup with cadmium above 0.8318 ㎍/g creatinine (30th percentile) was demonstrated in the subgroup with HbA1c levels above the 6.5%, with an odds ratio of 5.26 (95% C.I. ; 1.44~19.17). Conclusion: This study found a significant correlation between urinary levels of cadmium and HbA1c in correction of several factors. It is meaningful that this outcome may be used as a basis for a study to establish the acceptable limit of urinary cadmium in Korea.

당뇨병 발생에는 생활습관이나 생활환경과 관련된 다양한 원인들이 있는데 최근 연구에서 중금속에 많이 노출된 사람에서 당뇨병 발생 및 당뇨병의 악화가 늘어났다는 역학적 연구가 많이 발표되고 있다. 이에 국내 대규모 철강공업단지를 가진 일개 도시 지역 주민을 대상으로 당화혈색소와 체내 중금속의 상관성을 파악하고자 하였다. 2008~2009년 연구대상 총 414명에 대한 설문조사와 생체시료를 채취하였다. 설문은 성별, 연령, 인구학적 특성, 흡연, 음주, 직업, 당뇨진단 유무 등의 항목으로 구성하였다. 혈액을 채취하여 HbA1c, 혈중 납 농도를 측정하였고, 소변을 채취하여 요중 카드뮴, 무기비소, 수은 농도를 측정하였다. HbA1c는 6.5%기준으로 미만군과 이상군으로 분류하였다. 각 중금속별 10분위수부터 90분위수 농도에 해당하는 기준으로 미만군과 이상군 등 두 군을 분류하였다. 당뇨관련검사 결과 HbA1c 6.5% 기준으로 이상군은 남자 14(9.9%)명, 여자 17(6.2%)명이었다. 혈중 납의 기하평균 농도는 2.48 (1.80) ㎍/dl, 요중 카드뮴의 기하평균농도는 1.20 (2.26) ㎍/g creatinine, 요중 무기비소의 기하평균농도는 12.08 (1.80) ㎍/g creatinine, 요중 수은의 기하평균농도는 1.63 (2.23) ㎍/g creatinine 이었다. 연령, 지역, 성별, 흡연으로 보정하였을때 요중 카드뮴 농도 30분위수 이상군이 미만군에 비하여 교차비 5.26(95% 신뢰구간 : 1.44~19.17)으로 유의하게 높았다. 납, 무기비소, 수은은 HbA1c(6.5% 기준) 변수와의 교차분석에서 유의한 분포 차이는 없었다. 여러 요인을 보정하고도 요중 카드뮴과 HbA1c의 유의한 양의 상관관계를 파악하였고, 특히 유의한 상관관계를 보인 요중 카드뮴 농도의 특정 컷오프 값을 찾아내어 이를 통해 우리나라에 적합한 생물학적 노출값 설정의 참고자료로 활용될 수 있다는 점에서 의의가 있다고 생각한다.

Keywords

Acknowledgement

This work was supported by the Soonchunhyang University Research Fund.

References

  1. Bae JH, Han KD, Ko SH, Yang YS, Choi JH, Choi KM, Kwon HS, Won KC. Diabetes Fact Sheet in Korea 2021. Diabetes Metab J 2022;46(3):417-426 https://doi.org/10.4093/dmj.2022.0106
  2. Kim YE, Park H, Jo MW, Oh IH, Go DS, Jung J, et al. Trends and patterns of burden of disease and injuries in Korea using disability-adjusted life years. J Korean Med Sci 2019;34(Suppl 1):e75 https://doi.org/10.3346/jkms.2019.34.e75
  3. Beulens JWJ, Pinho MGM, Abreu TC, den Braver NR, Lam TM, Huss A, Vlaanderen J, Sonnenschein T, Siddiqui NZ, Yuan Z, Kerckhoffs J, Zhernakova A, Brandao Gois MF, Vermeulen RCH. Environmental risk factors of type 2 diabetes-an exposome approach. Diabetologia 2022;65(2):263-274 https://doi.org/10.1007/s00125-021-05618-w
  4. Valcke M, Ouellet N, Dub? M, Laouan Sidi EA, LeBlanc A, Normandin L, Balion C, Ayotte P. Biomarkers of cadmium, lead and mercury exposure in relation with early biomarkers of renal dysfunction and diabetes: Results from a pilot study among aging Canadians. Toxicol Lett 2019;312:148-156 https://doi.org/10.1016/j.toxlet.2019.05.014
  5. Filippini T, Wise LA, Vinceti M. Cadmium exposure and risk of diabetes and prediabetes: A systematic review and dose-response meta-analysis. Environ Int 2022;158:106920. doi: 10.1016/j.envint.2021.106920
  6. Lei LJ, Jin TY, Zhou YF. Insulin expression in rats exposed to cadmium. Biomed Environ Sci 2007;20(4):295-301
  7. Padilla MA, Elobeid M, Ruden DM, Allison DB. An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99-02. Int J Environ Res Public Health 2010;7(9):3332-47. doi: 10.3390/ijerph7093332
  8. Gonzalez-Villalva A, Colin-Barenque L, Bizarro-Nevares P, Rojas-Lemus M, Rodriguez-Lara V, Garcia-Pelaez I, Ustarroz-Cano M, Lopez-Valdez N, Albarran-Alonso JC, Fortoul TI. Pollution by metals: Is there a relationship in glycemic control? Environ Toxicol Pharmacol 2016;46:337-343 https://doi.org/10.1016/j.etap.2016.06.023
  9. Kim DS, Ahn SC, Ryu JM, Yu SD. Monitoring study on exposure levels of environmental pollutants in residents of a non-industrial area, Korea J Environ Health Sci 2012: 38(6): 482-492 (Korean) https://doi.org/10.5668/JEHS.2012.38.6.482
  10. Park E, Kim S, Song SH, Lee CW, Kwon JT, Lim MK, Park EY, Won YJ, Jung KW, Kim B. Environmental exposure to cadmium and risk of thyroid cancer from national industrial complex areas: A population-based cohort study. Chemosphere 2021;268:128819. doi: 10.1016/j.chemosphere.2020.128819
  11. Park Y, Oh CU. Association of lead, mercury, and cadmium with metabolic syndrome of young adults in South Korea: The Korea National Health and Nutrition Examination Survey (KNHANES) 2016. Public Health Nurs 2021;38(2):232-238 https://doi.org/10.1111/phn.12855
  12. Wang T, Zhou YP, Sun Y, Zheng YX. Trends in Blood Lead Levels in the U.S. From 1999 to 2016. Am J Prev Med 2021;60(4):e179-e187 https://doi.org/10.1016/j.amepre.2020.10.024
  13. Cho NH. The epidemiology of diabetes in Korea: from the economics to genetics. Korean Diabetes J 2010;34(1):10-15 https://doi.org/10.4093/kdj.2010.34.1.10
  14. Edwards JR, Prozialeck WC. cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 2009;238(3);289-293 https://doi.org/10.1016/j.taap.2009.03.007
  15. Swaddiwudhipong W, Mahasakpan P, Limpatanachote P, Krintratun S. Correlations of urinary cadmium with hypertension and diabetes in persons living in cadmium-contaminated villages in northwestern Thailand: A population study. Environ Res 2010;110(6):612-616 https://doi.org/10.1016/j.envres.2010.06.002
  16. Tinkov AA, Filippini T, Ajsuvakova OP, Aaseth J, Gluhcheva YG, Ivanova JM, Bjorklund G, Skalnaya MG, Gatiatulina ER, Popova EV, Nemereshina ON, Vinceti M, Skalny AV. The role of cadmium in obesity and diabetes. Sci Total Environ 2017;601-602:741-755 https://doi.org/10.1016/j.scitotenv.2017.05.224
  17. Guo FF, Hu ZY, Li BY, Qin LQ, Fu C, Yu H, Zhang ZL. Evaluation of the association between urinary cadmium levels below threshold limits and the risk of diabetes mellitus: a dose-response meta-analysis. Environ Sci Pollut Res Int 2019;26(19):19272-19281 https://doi.org/10.1007/s11356-019-04943-3
  18. Roy C, Tremblay PY, Ayotte P. Is mercury exposure causing diabetes, metabolic syndrome and insulin resistance? A systematic review of the literature. Environ Res 2017;156:747-760 https://doi.org/10.1016/j.envres.2017.04.038
  19. Moon SS. Association of lead, mercury and cadmium with diabetes in the Korean population: the Korea National Health and Nutrition Examination Survey (KNHANES) 2009-2010. Diabet Med 2013 ;30(4):e143-148 https://doi.org/10.1111/dme.12103
  20. Rehman K, Fatima F, Akash MSH. Biochemical investigation of association of arsenic exposure with risk factors of diabetes mellitus in Pakistani population and its validation in animal model. Environ Monit Assess 2019;191(8):511. doi: 10.1007/s10661-019-7670-2