DOI QR코드

DOI QR Code

Inhibitory Effects of Forsythia velutina and its Chemical Constituents on LPS-induced Nitric Oxide Production in BV2 Microglial Cells

  • Kim, Na-Yeon (Laboratory of Pharmacognosy, College of Pharmacy, Dankook University) ;
  • Ko, Min Sung (Laboratory of Pharmacognosy, College of Pharmacy, Dankook University) ;
  • Lee, Chung Hyun (Laboratory of Pharmacognosy, College of Pharmacy, Dankook University) ;
  • Lee, Taek Joo (Hantaek Botanical Garden) ;
  • Hwang, Kwang-Woo (Host Defense Modulation Laboratory, College of Pharmacy, Chung-Ang University) ;
  • Park, So-Young (Laboratory of Pharmacognosy, College of Pharmacy, Dankook University)
  • Received : 2022.06.18
  • Accepted : 2022.09.07
  • Published : 2022.09.30

Abstract

Neuroinflammation is known to be associated with brain injury in Alzheimer's disease (AD), and the inhibition of microglial activation, a key player in inflammatory response, is considerd as important target for AD. In this study, the ethanol extract of aerial parts of Forsythia velutina Nakai, a Korean native species, significantly inhibited nitric oxide (NO) production in LPS-stimulated BV2 microglial cells. Thus, the active principles in F. velutina aerial parts were isolated based on activity-guided isolation method. As a result, six compounds were isolated and their structures were elucidated based on NMR data and the comparison with the relevant references as arctigenin (1), matairesinol (2), rengyolone (3), ursolic acid (4), secoisolariciresinol (5), and arctiin (6). Among them, four compounds including arctigenin (1), matairesinol (2), secoisolariciresinol (5), and arctiin (6) significantly inhibited NO production in a dose-dependent manner. In particular, matairesinol (2) and secoisolariciresinol (5) reduced 60% of NO production compared to LPS-treated group. This inhibitory effects of matairesinol (2) and secoisolariciresinol (5) were accompanied with the reduced expression levels of iNOS and COX-2. These results suggest that the extract of F. velutina and its active compounds could be beneficial for neuroinflammatory diseases including AD.

Keywords

Acknowledgement

This work was supported by the KIST (Korea Advanced Institute of Science and Technology) Open Research Program (2E29561, 2E31881). We also thank the Hantaek Botanical Garden for providing the extract of F. velutina, and Institute for Basic Science for NMR data.

References

  1. Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G. M.; Cooper, N. R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B. L.; Finch, C. E.; Frautschy, S.; Griffin, W. S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I. R.; McGeer, P. L.; O'Banion, M. K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Ryde l, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F. L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Neurobiol. Aging 2000, 21, 383-421.
  2. Kitazawa, M.; Yamasaki, T. R.; Laferla, F. M. Ann. N. Y. Acad. Sci. 2004, 1035, 85-103. https://doi.org/10.1196/annals.1332.006
  3. Wang, Z.; Xia, Q.; Liu, X.; Liu, W.; Huang, W.; Mei, X.; Luo, J.; Shan, M.; Lin, R.; Zou, D.; Ma, Z. J. Ethnopharmacol. 2018, 210, 318-339. https://doi.org/10.1016/j.jep.2017.08.040
  4. Dong, Z.; Lu. X.; Tong. X.; Dong, Y.; Tang, L.; Liu, M. Molecules 2017, 22, 1466. https://doi.org/10.3390/molecules22091466
  5. Zhang, H. Y. J. Chin. Med. Mater. 2000, 23, 657-660.
  6. Hu, J. Y.; Lei, L.; Yu, Y.; Deng, W. L. Pharmacol. Clin. Chin. Mater. Med. 2007, 23, 51-52.
  7. Ozaki, Y.; Rui, J.; Tang, Y.; Satake, M. Biol. Pharm. Bull. 1997, 20, 861-864.
  8. Aslan, U.; Oksuz, S. Turk. J. Chem. 1999, 23, 15-20.
  9. Yang, M.; Xu, X.; Xie, C.; Xie, Z.; Huang, J.; Yang, D. Sep. Sci. Technol. 2013, 48, 1738-1744.
  10. Fang, J. M.; Wei, K. M.; Cheng, Y. S. J. Chin. Chem. Soc. 1985, 32, 75-80. https://doi.org/10.1002/jccs.198500013
  11. Rahman, M. M. A.; Dewick, P. M.; Jackson, D. E.; Lucas, J. A. Phytochemistry 1990, 29, 1971-1980. https://doi.org/10.1016/0031-9422(90)85050-P
  12. Siddiqui, B. S.; Ahmad, F.; Sattar, F. A.; Begum, S. Arch. Pharm. Res. 2007, 30, 1507-1510.
  13. Endo, K.; Hikino, H. Can. J. Chem. 1984, 62, 2011-2014.
  14. Silva, M.; Vieira, I. G. P.; Mendes, F. N. P.; Albuquerque, I. L.; dos Santos, R. N.; Silva, F. O.; Morais, S. M. Molecules 2008, 13, 2482-2487. https://doi.org/10.3390/molecules13102482
  15. Seebacher, W.; Simic, N .; Weis, R.; Saf, R.; Kunert, O. Magn. Reson. Chem. 2003, 41, 636-638. https://doi.org/10.1002/mrc.1214
  16. Xie, L. H.; Ahn, E. M.; Akao, T.; Abdel-Hafez, A.; Nakamura, N.; Hattori, M. Chem. Pharm. Bull (Tokyo). 2003, 51, 378-384. https://doi.org/10.1248/cpb.51.378
  17. Cespedes, C. L.; Avila, J. G.; Garcia, A. M.; Becerra, J.; Flores, C.; Aqueveque, P.; Bittner, M.; Hoeneisen, M.; Martinez, M.; Silva, M. Z. Naturforsch. C. J. Biosci. 2006, 61, 35-43.
  18. Fonseca, S. F.; de Paiva Campello, J.; Barata, L. E. S.; Ruveda, E. A. Phytochemistry 1978, 17, 499-502. https://doi.org/10.1016/S0031-9422(00)89347-4
  19. Gao, Q.; Yang, M.; Zuo, Z. Acta. Pharmacol. Sin. 2018, 39, 787-801.
  20. Ryu, S. Y.; Ahn, J. W.; Kang, Y. H.; Han, B. H. Arch. Pharm. Res. 1995, 18, 462-463.
  21. Lou, C.; Zhu, Z.; Zhao, Y.; Zhu, R.; Zhao, H. Oncol. Rep. 2017, 37, 179-184.
  22. Choi, S. W.; Park, K. I.; Yeon, J. T.; Ryu, B. J.; Kim, K. J.; Kim, S. H. BMC Complement. Altern. Med. 2014, 14, 35.
  23. Yamauchi, S.; Sugahara, T.; Nakashima, Y.; Okada, A.; Akiyama, K.; Kishida, T.; Maruyama, M.; Masuda, T. Biosci. Biotechnol. Biochem. 2006, 70, 1934-1940. https://doi.org/10.1271/bbb.60096
  24. Peuhu, E.; Rivero-Muller, A.; Stykki, H.; Torvaldson, E.; Holmbom, T.; Eklund, P.; Unkila, M.; Sjoholm, R.; Eriksson, J. E. Oncogene 2010, 29, 898-908. https://doi.org/10.1038/onc.2009.386
  25. Anderson, J. W.; Hanna, T. J. Am. J. Clin. Nutr. 1999, 70, 307-308. https://doi.org/10.1093/ajcn/70.3.307
  26. Hollman, P. C. H.; Cassidy, A.; Comte, B.; Heinonen, M.; Richelle, M.; Richling, E.; Serafini, M.; Scalbert, A.; Sies, H.; Vidry, S. J. Nutr. 2011, 141, 989S-1009S.
  27. Lee, G. H.; Hyun, K. Y.; Kang, Y. J. Biomed. Sci. Lett. 2019, 25, 54-59.
  28. Yim, E. K.; Lee, M. J.; Lee, K. H.; Um, S. J.; Park, J. S. Int. J. Gynecol. Cancer 2006, 16, 2023-2031.
  29. Somova, L. O.; Nadar, A.; Rammanan, P.; Shode, F. O. Phytomedicine 2003, 10, 115-121. https://doi.org/10.1078/094471103321659807
  30. Cheng, M.; Liang, X. H.; Wang, Q. W.; Deng, Y. T.; Zhao, Z. X.; Liu, X. Y. Chin. J. Intergr. Med. 2019, 25, 210-215.
  31. Kim, S. H.; Ryu, H. G.; Lee, J.; Shin, J.; Harikishore, A.; Jung, H. Y.; Kim, Y. S.; Lyu, H. N.; Oh, E.; Baek, N. I.; Choi, K. Y.; Yoon, H. S.; Kim, K. T. Sci. Rep. 2015, 5, 14570. https://doi.org/10.1038/srep14570
  32. Sultana, N. J. Enzyme Inhib. Med. Chem. 2011, 26, 616-642.
  33. Monsefi, M.; Nadi, A.; Alinejad, Z. Int. J. Reprod. Biomed. 2017, 15, 649-660. https://doi.org/10.29252/ijrm.15.10.8
  34. Luo, J.; Hu, Y. L.; Wang, H. Exp. Ther. Med. 2017, 14, 3623-3631. https://doi.org/10.3892/etm.2017.4965
  35. Moree, S. S.; Rajesha, J. Bio. Med. Res. Int. 2011, 2, 1-24.
  36. Saggar, J. K.; Chen, J.; Corey, P.; Thompson, L. U. Nutr. Cancer 2010, 62, 533-542.
  37. Patel, D.; Vaghasiya, J.; Pancholi, S. S.; Paul, A. Int. J. Pharm. Sci. Drug Res. 2012, 4, 15-18.
  38. Lu, L. C.; Zhou, W.; Li, Z. H.; Yu, C. P.; Li, C. W.; Luo, M. H.; Xie, H. Planta Med. 2012, 78, 1317-1323. https://doi.org/10.1055/s-0032-1314998
  39. Wu, R. M.; Sun, Y. Y.; Zhou, T. T.; Zhu, Z. Y.; Zhuang, J. J.; Tang, X.; Chen, J.; Hu, L. H.; Shen, X. Acta Pharmacol. Sin. 2014, 35, 1274-1284.
  40. Hayashi, K.; Narutaki, K.; Nagaoka, Y.; Hayashi, T.; Uesato, S. Biol. Pharm. Bull. 2010, 33, 1199-1205.
  41. Matsuzaki, Y.; Koyama, M.; Hitomi, T.; Yokota, T.; Kawanaka, M.; Nishikawa, A.; Germain, D.; Sakai, T. Oncol. Rep. 2008, 19, 721-727.