DOI QR코드

DOI QR Code

A Study on Properties of Pb-free Solder Joints Combined Sn-Bi-Ag with Sn-Ag-Cu by Conditions of Reflow Soldering Processes

리플로우 솔더링 공정 조건에 따른 Sn-Bi-Ag와 Sn-Ag-Cu 복합 무연 솔더 접합부 특성 연구

  • Kim, Jahyeon (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology(KITECH)) ;
  • Cheon, Gyeongyeong (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology(KITECH)) ;
  • Kim, Dongjin (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology(KITECH)) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University) ;
  • Ko, Yong-Ho (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology(KITECH))
  • 김자현 (한국생산기술연구원 접합적층연구부문) ;
  • 천경영 (한국생산기술연구원 접합적층연구부문) ;
  • 김동진 (한국생산기술연구원 접합적층연구부문) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 고용호 (한국생산기술연구원 접합적층연구부문)
  • Received : 2022.09.21
  • Accepted : 2022.09.30
  • Published : 2022.09.30

Abstract

In this study, properties of Pb-free solder joints which were combined using Sn-3.0Ag-0.5Cu (SAC305) Pb-free solder with a mid-temperature type of melting temperature and Sn-57Bi-1Ag Pb-free solder with a low-temperature type of melting temperature were reported. Combined Pb-free solder joints were formed by reflow soldering processes with ball grid array (BGA) packages which have SAC305 solder balls and flame retardant-4 (FR-4) printed circuit boards (PCBs) which printed Sn-57Bi-1Ag solder paste. The reflow soldering processes were performed with two types of temperature profiles and interfacial properties of combined Pb-free solder joints such as interfacial reactions, formations of intermetallic compounds (IMCs), diffusion mechanisms of Bi, and so on were analyzed with the reflow process conditions. In order to compare reliability characteristics of combined Pb-free solder joints, we also conducted thermal shock test and analyzed changes of mechanical properties for joints from a shear test during the thermal shock test.

본 연구에서는 용융온도가 중온계 무연 솔더인 Sn-3.0Ag-0.5Cu(SAC305)와 저온계 무연 솔더인 Sn-57Bi-1Ag를 사용하여 형성된 복합 무연 솔더 접합부의 특성에 대하여 보고 하였다. SAC305 솔더볼이 형성된 ball grid array(BGA) 패키지와 Sn-57Bi-1Ag 솔더 페이스트가 도포된 flame retardant-4(FR-4) 인쇄회로기판(printed circuit board, PCB)을 리플로우 솔더링 공정을 이용하여 복합 무연 솔더 접합부를 형성 하였다. 공정 온도 프로파일을 두 가지 형태로 달리하여 리플로우 솔더링 공정을 진행하였으며 리플로우 솔더링 공정 조건에 따른 계면 반응, 금속간화합물(intermetallic compound, IMC)의 형성, Bi의 확산 거동 등 복합 무연 솔더 접합부 계면 특성을 비교 분석 하였다. 또한, 열 충격 시험을 통하여 리플로우 솔더링 공정에 따른 복합 무연 솔더 접합부의 신뢰성 특성을 비교하고 열 충격 시험 전후 전단 시험을 진행하여 접합부의 기계적 특성 변화를 분석하였다.

Keywords

Acknowledgement

이 연구는 2022년 산업통상자원부 및 한국산업기술평가관리원(KEIT) 연구비 지원에 의하여 수행 되었습니다. (20006956, 열충격 2000cycle 이상 신뢰성을 갖는 모바일용 내충격 언더필 소재 및 접합모듈 기술 개발)

References

  1. A. Sharif, Y. C. Chan, and R. A. Islam, "Effect of volume in interfacial reaction between eutectic Sn-Pb solder and Cu metallization in microelectronic packaging", Mater. Sci. Eng.: B, 106(2), 120 (2004). https://doi.org/10.1016/j.mseb.2003.09.003
  2. C. Kanchanomai, Y. Miyashita, and Y. Mutoh, "Low cycle fatigue behavior and mechanisms of a eutectic Sn-Pb solder63Sn/37Pb", Int. J. Fatigue, 24(6), 671 (2002). https://doi.org/10.1016/S0142-1123(01)00186-4
  3. Directive 2002/95/EC on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS), The European Parliament and of the Council of the European Union, Jan. (2003).
  4. K. S. Kim, S. H. Huh, and K. Suganuma, "Effects of intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints", J. Alloys Compd., 352(1-2), 226 (2003). https://doi.org/10.1016/S0925-8388(02)01166-0
  5. S. Choi, T. R. Bieler, J. P. Lucas, and K. N. Subramanian, "Characterization of the Growth of Intermetallic Interfacial Layers of Sn-Ag and Sn-Pb Eutectic Solders and Their Composite Solders on Cu Substrate During Isothermal Long-Term Aging", J. Electron. Mater., 28, 1209 (1999). https://doi.org/10.1007/s11664-999-0159-y
  6. R. Mahmudi, A. R. Geranmayeh, S. R. Mahmoodi, and A. Khalatbari, "Room-temperature indentation creep of lead-free Sn-Bi solder alloys", J. Mater. Sci.: Mater. Electron, 18, 1071 (2007).
  7. J. W. Yoon, S. W. Kim, J. M. Koo, D. G. Kim, and S. B. Jung, "Reliability Investigation and Interfacial Reaction of BallGrid-Array Packages Using the Lead-Free Sn-Cu Solder", J. Electron. Mater., 33, 1190 (2004). https://doi.org/10.1007/s11664-004-0122-x
  8. J. W. Yoon, Y. H. Lee, D. G. Kim, H. B. Kang, S. J. Suh, C. W. Yang, C. B. Lee, J. M. Jung, C. S. Yoo, and S. B. Jung, "Intermetallic compound layer growth at the interface between Sn-Cu-Ni solder and Cu substrate", J. Alloys Compd., 381(1-2), 151 (2004). https://doi.org/10.1016/j.jallcom.2004.03.076
  9. T. Plookphol, S. Wisutmethangoon, and S. Gonsrang, "Influence of process parameters on SAC305 lead-free solder powder produced by centrifugal atomization", Powder Technol., 214(3), 506 (2011). https://doi.org/10.1016/j.powtec.2011.09.015
  10. H. P. Shin, B. W. Ahn, J. H. Ahn, J. G. Lee, K. S. Kim, D. H. Kim, and S. B. Jung, "Interfacial Reaction and Joint Strength of the Sn-58Bi Solder Paste with ENIG Surface Finished Substrate(in korean)", J. Microelectron. Package. Soc., 30(5), 458 (2012).
  11. J. H. Kim, Y. C. Lee, S. M. Lee, and S. B. Jung, "Effect of surface finishes on electromigration reliability in eutectic Sn- 58Bi solder joints", Microelectron. Eng., 120, 77 (2014). https://doi.org/10.1016/j.mee.2013.12.006
  12. X. Chen, F. Xue, J. Zhou, and Y. Yao, "Effect of In on microstructure, thermodynamic characteristic and mechanical properties of Sn-Bi based lead-free solder", J. Alloys Compd., 633, 377 (2015). https://doi.org/10.1016/j.jallcom.2015.01.219
  13. O. Mokhtari and H. Nishikawa, "Effects of In and Ni Addition on Microstructure of Sn-58Bi Solder Joint", J. Electron. Mater., 43(11), 4158 (2014). https://doi.org/10.1007/s11664-014-3359-z
  14. W. R. Myung, Y. Kim, and S. B. Jung, "Mechanical property of the epoxy-contained Sn-58Bi solder with OSP surface finish", J. Alloys Compd., 615(1), S411 (2014). https://doi.org/10.1016/j.jallcom.2014.01.078
  15. C. Fuchs, T. Schreck, and M. Kaloudis, "Interfacial reactions between Sn-57Bi-1Ag solder and electroless Ni-P/immersion Au under soild-state aging", J. Mater. Sci., 47 (9), 4036 (2012). https://doi.org/10.1007/s10853-012-6257-x
  16. T. J. Swanson, "Properties of Mixing SAC Solder Alloys with Bismuth-Containing Solder Alloys for a Low Reflow Temperature Process", Master Thesis, Rochester Institute of Technology, New York, US (2018).
  17. Y. Liu, F. Sun, and X. Liu, "Improving Sn-0.3Ag-0.7Cu lowAg lead-free solder performance by adding Bi element", Int. Forum Strateg. Tech. 2010, 11697436 (2010).
  18. Y. Liu, R. Xu, H. Zhang, and F. Sun, "Microstructure and shear behavior of solder joint with Sn58Bi/Sn3.0Ag0.5Cu/Cu superposition structure", J. Mater. Sci. Mater. Electron. 30, 14077 (2019). https://doi.org/10.1007/s10854-019-01773-4
  19. H. Wang, J. Wang, J. Xu, V. Pham, K. Pan, S. Park, H. Lee, and G. R.-Ahmed, "Product Level Design Optimization for 2.5 D Package Pad Cratering Reliability During Drop Impact", In 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), IEEE, 2343-2348 (2019).
  20. S. Sahasrabudhe, S. Mokler, M. Renavikar, S. Sane, K. Byrd, E. Brigham, O. Jin, P. Goonetilleke, N. Badwe, and S. Parupalli, "Low Temperature Solder-A Breakthrough Technology for Surface Mounted Devices", 2018 IEEE 68th Electronic Components and Technology Conference(ECTC), 18001596 (2018).
  21. C. Cai, J. Xu, H. Wang, and S. Park, "Reliability of homogeneous Sn-Bi and hybrid Sn-Bi/SAC BGAs", 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), 19889381 (2020).
  22. Y. Kim and J. Kwon, "Influence of Nickel Thickness and Annealing Time on the Mechanical Properties of Intermetallic Compounds Formed between Cu-Sn Solder and Substrate", Korean J. Met. Mater., 55(3), 165 (2017).
  23. J. Kim, W. R. Myung, and S. B. Jung, "Effect of Aging treatment and Epoxy on Bonding Strength of Sn-58Bi solder and OSP-finished PCB(in korean)", J. Microelectron. Packag. Soc., 21(4), 97 (2014). https://doi.org/10.6117/kmeps.2014.21.4.097
  24. Y. -C. Sohn and J. Yu, "Correlation between Interfacial Reaction and Brittle Fracture Found in Electroless Ni(P) Metallization", J. Microelectron. Pack. Soc., 12(1), 41 (2005).
  25. S. -S. Ha, J. -W. Kim, J. -H. Chae, W. -C. Moon, T. -H. Hong, C. -S. Yoo, J. -H. Moon, and S. -B. Jung, "Thermo-Mechanical Reliability of Lead-free Surface Mount Assemblies for Auto-Mobile Application", J. Kor. Weld. Join. Soc., 24(6), 21 (2007) (in Korean).