DOI QR코드

DOI QR Code

증발법으로 합성된 신규 가돌리늄 금속-유기골격체의 단결정 구조 분석 및 자성학적 특성 연구

Structure analysis, and magnetic study of a new Gd-metal-organic framework single crystal grown by the slow-evaporation method

  • 송정화 (한라대학교 신소재화학공학과)
  • Song, Jeong Hwa (Dept. of Advanced Materials & Chemical Engineering, Halla University)
  • 투고 : 2022.09.27
  • 심사 : 2022.10.07
  • 발행 : 2022.10.31

초록

유연한 구조의 p-XBP4 리간드를 활용하여 새로운 3차원 구조의 Gd-MOF를 합성하고 단결정 회절 분석기를 활용하여 정확한 구조를 분석하였다. 중심 금속인 Gd는 6개의 p-XBP4와 1개의 물 분자에 의해 총 7배위 되어 있으며, W(CN)8는 배위되지 않고 전하 균형을 맞추기 위해 구조체 내에 위치하고 있다. 중심 금속인 Gd는 배위된 p-XBP4에 의해 이웃한 Gd와 연결되어 3차원의 입체구조를 형성한다. 란탄 금속의 특성을 고려하여 직류 자화율 측정을 활용하여 자성 특성에 대한 연구를 진행하였다.

A new three-dimensional Gd-MOF, [Gd(p-XBP4)4(H2O)]·W(CN)8; (1; p-XBP4 = N,N'-p-phenylenedimethylenbis (pyridin-4-one)) has been synthesized by slow-evaporation and its crystal structure was characterized by single-crystal X-ray diffraction (SCXRD) analysis. For each GdIII ion, there are seven coordination sites, which are occupied by six oxygen atoms of six p-XBP4 ligands and one oxygen atom from the water molecule. The [W(CN)8]3- anion exists for charge balance with cationic framework. The GdII ions are interconnected by the p-XBP4 ligand to form the three-dimensional structure. Considering the magnetic property of lanthanide ions, magnetic studies of Gd-MOF were investigated by direct-current (DC) magnetic susceptibilities measurements.

키워드

과제정보

본 논문은 한국연구재단의 생애 첫 연구사업(과제번호: 2021R1G1A1094963)의 지원을 받아 수행된 연구 결과입니다.

참고문헌

  1. W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li and S.K. Ghosh, "Metal-organic frameworks: functional luminescent and photonic materials for sensing applications", Chem. Soc. Rev. 46 (2017) 3242. https://doi.org/10.1039/C6CS00930A
  2. Y.B. Huang, J. Liang, X.S. Wang and R. Cao, "Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions", Chem. Soc. Rev. 46 (2017) 126. https://doi.org/10.1039/C6CS00250A
  3. W. Zhu, C. Zhang, Q. Li, L. Xiong, R. Chen, X. Wan, Z. Wang, W. Chen, Z. Deng and Y. Peng, "Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination", Appl. Catal. B 238 (2018) 339. https://doi.org/10.1016/j.apcatb.2018.07.024
  4. X. Fang, B. Zong and S. Mao, "Metal-organic framework-based sensors for environmental contaminant sensing", Nano-Micro Lett. 10 (2018) 64. https://doi.org/10.1007/s40820-018-0218-0
  5. H. Furukawa, K.E. Cordova, M. O'Keeffe and O.M. Yaghi, "The chemistry and applications of metal-organic frameworks", Science 341 (2013) 974.
  6. T.R. Cook, Y.R. Zheng and P.J. Stang, "Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal-organic materials", Chem. Rev. 113 (2013) 734. https://doi.org/10.1021/cr3002824
  7. S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li and H.C. Zhou, "Stable metal-organic frameworks: Design, synthesis, and applications", Adv. Mater. 30 (2018) 1704303. https://doi.org/10.1002/adma.201704303
  8. Y. Bi, C. Chen, Y.F. Zhao, Y.Q. Zhang, S.D. Jiang, B.W. Wang, J.B. Han, J.L. Sun, Z.Q. Bian, Z.M. Wang and S. Gao, "Thermostability and photoluminescence of Dy(iii) single-molecule magnets under a magnetic field", Chem. Sci. 7 (2016) 5020. https://doi.org/10.1039/c6sc01157h
  9. T. Luo, C. Liu, S.V. Eliseeva, P.F. Muldoon, S. Petoud and N.L. Rosi, "Rare earth pcu metal-organic framework platform based on RE43-OH)4(COO)62+ clusters: Rational design, directed synthesis, and deliberate tuning of excitation wavelengths", J. Am. Chem Soc. 139 (2017) 9333. https://doi.org/10.1021/jacs.7b04532
  10. F. Zhang, H. Yao, T. Chu, G. Zhang, Y. Wang and Y. Yang, "A lanthanide MOF thin-film fixed with Co3O4 nano-anchors as a highly efficient luminescent sensor for nitrofuran antibiotics", Chem. Eur. J. 23 (2017) 10293. https://doi.org/10.1002/chem.201701852
  11. C.S. Liu, J.J. Li and H. Pang, "Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing", Coord. Chem. Rev. 410 (2020) 213222. https://doi.org/10.1016/j.ccr.2020.213222
  12. X.Y. Li, Y.Z. Li, Y. Yang, L. Hou, Y.Y. Wang and Z. Zhu, "Efficient light hydrocarbon separation and CO2 capture and conversion in a stable MOF with oxalamide-decorated polar tubes", Chem. Commun. 53 (2017) 12970. https://doi.org/10.1039/C7CC08298C
  13. A. Kertik, L.H. Wee, M. Pfannmoller, S. Bals, J.A. Martens and I.F.J. Vankelecom, "Highly selective gas separation membrane using in situ amorphised metal-organic frameworks", Energy Environ. Sci. 10 (2017) 2342. https://doi.org/10.1039/c7ee01872j
  14. A.D. Cardenal, H.J. Park, C.J. Chalker and K.G. Ortiz, "cis-Decalin oxidation as a stereochemical probe of in-MOF versus on-MOF catalysis", Chem. Commun. 53 (2017) 7377. https://doi.org/10.1039/C7CC02570J
  15. G.D. Stasio, P. Casalbore, R. Pallini, B. Gilbert, F. Sanita, M.T. Ciotti, G. Rosi, A. Festinesi, L.M. Larocca, A. Rinelli, D. Perret, D.W. Mogk, P. Perfetti, M.P. Mehta and D. Mercanti, "Gadolinium in human glioblastoma cells for gadolinium neutron capture therapy", Cancer Res. 61 (2001) 4272.
  16. G. Leinweber, D.P. Barry, M.J. Trbovich, J.A. Burke, N.J. Drindak, H.D. Knox and R.V. Ballad, "Neutron capture and total cross-section measurements and resonance parameters of gadolinium", Nucl. Sci. Eng. 154 (2006) 261. https://doi.org/10.13182/NSE05-64
  17. A.J. Jacobson, "Materials for solid oxide fuel cells", Chem. Mater. 22 (2010) 660. https://doi.org/10.1021/cm902640j
  18. Y. Lee, J. Shin, K. Oh, S. Noh, D. Kim, J. Kim, J. Hong, S. Park, J. Kim and S. Nam, "Implementation of radiation image detector based on lutetium and gadolinium phosphors", J. Instrum. 8 (2013) P03018. https://doi.org/10.1088/1748-0221/8/03/P03018
  19. P. Caravan, J.J. Ellison, T.J. McMurry and R.B. Lauffer, "Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications", Chem. Rev., 99 (1999) 2293. https://doi.org/10.1021/cr980440x
  20. D.V. Hingorani, A.S. Bernstein and M.D. Pagel, "A review of responsive MRI contrast agents: 2005-2014", Contrast Media Mol. Imaging 10 (2014) 245. https://doi.org/10.1002/cmmi.1629
  21. J.-L. Liu, Y.-C. Chen, F.-S. Guo and M.-L. Tong, "Recent advances in the design of magnetic molecules for use as cryogenic magnetic coolants", Coord. Chem. Rev. 281 (2014) 26. https://doi.org/10.1016/j.ccr.2014.08.013
  22. T.N. Hooper, J. Schnack, S. Piligkos, M. Evangelisti and E.K. Brechin, "The importance of being exchanged: [GdIII4MII8(OH)8(L)8(O2CR)8]4+ clusters for magnetic refrigeration", Angew. Chem., Int. Ed. 51 (2012) 4633. https://doi.org/10.1002/anie.201200072
  23. M.J. Martinez-Perez, S. Cardona-Serra, C. Schlegel, F. Moro, P.J. Alonso, H. Prima-Garcia, J.M. Clemente-Juan, M. Evangelisti, A. Gaita-Arino, J. Sese, J. van Slageren, E. Coronado and F. Luis, "Gd-based single-ion magnets with tunable magnetic anisotropy: Molecular design of spin qubits", Phys. Rev. Lett. 108 (2012) 247213. https://doi.org/10.1103/physrevlett.108.247213
  24. D.M.L. Goodgame, S. Menzer, A.M. Smith and D.J. Williams, "Formation of interwoven or partially interwoven metallomacrocyclic networks in copper(II) or zinc(II) complexes with N,N'-p-phenylenedimethylenebis(pyridin-4-one)", J. Am. Chem. Soc., Chem. Commun. 19 (1995) 1975.
  25. L.D. Bok, J.G. Leipoldt, S.S. Basson, "The preparation of Cs3Mo(CN)8·2H2O and Cs3W(CN)8·2H2O", Z. Anorg. Allg. Chem. 415 (1975) 81. https://doi.org/10.1002/zaac.19754150111