DOI QR코드

DOI QR Code

A novel mechanism of Korean Red Ginseng-mediated anti-inflammatory action via targeting caspase-11 non-canonical inflammasome in macrophages

  • Min, Ji-Hyun (Department of Life Sciences, Kyonggi University) ;
  • Cho, Hui-Jin (Department of Life Sciences, Kyonggi University) ;
  • Yi, Young-Su (Department of Life Sciences, Kyonggi University)
  • 투고 : 2021.11.10
  • 심사 : 2021.12.26
  • 발행 : 2022.09.01

초록

Background: Korean Red Ginseng (KRG) was reported to play an anti-inflammatory role, however, previous studies largely focused on the effects of KRG on priming step, the inflammation-preparing step, and the anti-inflammatory effect of KRG on triggering, the inflammation-activating step has been poorly understood. This study demonstrated anti-inflammatory role of KRG in caspase-11 non-canonical inflammasome activation in macrophages during triggering of inflammatory responses. Methods: Caspase-11 non-canonical inflammasome-activated J774A.1 macrophages were established by priming with Pam3CSK4 and triggering with lipopolysaccharide (LPS). Cell viability and pyroptosis were examined by MTT and lactate dehydrogenase (LDH) assays. Nitric oxide (NO)-inhibitory effect of KRG was assessed using a NO production assay. Expression and proteolytic cleavage of proteins were examined by Western blotting analysis. In vivo anti-inflammatory action of KRG was evaluated with the LPS-injected sepsis model in mice. Results: KRG reduced LPS-stimulated NO production in J774A.1 cells and suppressed pyroptosis and IL-1β secretion in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Mechanistic studies demonstrated that KRG suppressed the direct interaction between LPS and caspase-11 and inhibited proteolytic processing of both caspase-11 and gasdermin D in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Furthermore, KRG significantly ameliorated LPS-mediated lethal septic shock in mice. Conclusion: The results demonstrate a novel mechanism of KRG-mediated anti-inflammatory action that operates through targeting the caspase-11 non-canonical inflammasome at triggering step of macrophage-mediated inflammatory response.

키워드

과제정보

This work was supported by Kyonggi University's Graduate Research Assistantship 2021 and a grant from the Korean Society of Ginseng (2020).

참고문헌

  1. Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  2. Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 2021;6:291. https://doi.org/10.1038/s41392-021-00687-0
  3. McKernan DP. Pattern recognition receptors as potential drug targets in inflammatory disorders. Adv Protein Chem Struct Biol 2020;119:65-109. https://doi.org/10.1016/bs.apcsb.2019.09.001
  4. Yi Young-Su. Syk-MyD88 Axis Is a Critical Determinant of InflammatoryResponse in Activated Macrophages 2021. https://doi.org/10.3389/fimmu.2021.767366.
  5. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 2019;20.
  6. Yi YS. Functional crosstalk between non-canonical caspase-11 and canonical NLRP3 inflammasomes during infection-mediated inflammation. Immunology 2020;159:142-55. https://doi.org/10.1111/imm.13134
  7. Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov 2020;6:36. https://doi.org/10.1038/s41421-020-0167-x
  8. Chauhan D, Vande Walle L, Lamkanfi M. Therapeutic modulation of inflammasome pathways. Immunol Rev 2020;297:123-38. https://doi.org/10.1111/imr.12908
  9. Christgen S, Kanneganti TD. Inflammasomes and the fine line between defense and disease. Curr Opin Immunol 2020;62:39-44. https://doi.org/10.1016/j.coi.2019.11.007
  10. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM. Non-canonical inflammasome activation targets caspase-11. Nature 2011;479:117-21. https://doi.org/10.1038/nature10558
  11. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 2013;341:1250-3. https://doi.org/10.1126/science.1240988
  12. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszynski A, Forsberg LS, Carlson RW, Dixit VM. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 2013;341:1246-9. https://doi.org/10.1126/science.1240248
  13. Christgen S, Place DE, Kanneganti TD. Toward targeting inflammasomes: insights into their regulation and activation. Cell Res 2020;30:315-27. https://doi.org/10.1038/s41422-020-0295-8
  14. Xue Y, Enosi Tuipulotu D, Tan WH, Kay C, Man SM. Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol 2019;40: 1035-52. https://doi.org/10.1016/j.it.2019.09.005
  15. Mathur A, Hayward JA, Man SM. Molecular mechanisms of inflammasome signaling. J Leukoc Biol 2018;103:233-57. https://doi.org/10.1189/jlb.3MR0617-250R
  16. Ding J, SnapShot Shao F. The noncanonical inflammasome. Cell 2017;168: 544-544 e541. https://doi.org/10.1016/j.cell.2017.01.008
  17. Yi YS. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology 2017;152:207-17. https://doi.org/10.1111/imm.12787
  18. Yi YS. Regulatory roles of the caspase-11 non-canonical inflammasome in inflammatory diseases. Immune Netw 2018;18:e41. https://doi.org/10.4110/in.2018.18.e41
  19. Yi YS. Caspase-11 non-canonical inflammasome: emerging activator and regulator of infection-mediated inflammatory responses. Int J Mol Sci 2020;21.
  20. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302. https://doi.org/10.2174/157016109788340767
  21. Zhao B, Lv C, Lu J. Natural occurring polysaccharides from Panax ginseng C. A. Meyer: a review of isolation, structures, and bioactivities. Int J Biol Macromol 2019;133:324-36. https://doi.org/10.1016/j.ijbiomac.2019.03.229
  22. Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2018;42:123-32. https://doi.org/10.1016/j.jgr.2017.01.008
  23. Hyun SH, Ahn HY, Kim HJ, Kim SW, So SH, In G, Park CK, Han CK. Immunoenhancement effects of Korean Red Ginseng in healthy adults: a randomized, double-blind, placebo-controlled trial. J Ginseng Res 2021;45:191-8. https://doi.org/10.1016/j.jgr.2020.08.003
  24. Nam YH, Jeong SY, Kim YH, Rodriguez I, Nuankaew W, Bhawal UK, Hong BN, Kang TH. Anti-aging effects of Korean Red Ginseng (KRG) in differentiated embryo chondrocyte (DEC) knockout mice. J Ginseng Res 2021;45:183-90. https://doi.org/10.1016/j.jgr.2020.09.003
  25. Yoon SJ, Kim SK, Lee NY, Choi YR, Kim HS, Gupta H, Youn GS, Sung H, Shin MJ, Suk KT. Effect of Korean red ginseng on metabolic syndrome. J Ginseng Res 2021;45:380-9. https://doi.org/10.1016/j.jgr.2020.11.002
  26. Park SK, Hyun SH, In G, Park CK, Kwak YS, Jang YJ, Kim B, Kim JH, Han CK. The antioxidant activities of Korean Red Ginseng (Panax ginseng) and ginsenosides: a systemic review through in vivo and clinical trials. J Ginseng Res 2021;45:41-7. https://doi.org/10.1016/j.jgr.2020.09.006
  27. Hossain MA, Lee D, Kim B, Kang CW, Kim NS, Kim JH. Korean Red Ginseng attenuates type 2 diabetic cardiovascular dysfunction in Otsuka Long-Evans Tokushima Fatty rats. J Ginseng Res 2020;44:308-11. https://doi.org/10.1016/j.jgr.2018.12.003
  28. Shin SJ, Nam Y, Park YH, Kim MJ, Lee E, Jeon SG, Bae BS, Seo J, Shim SL, Kim JS, Han CK, Kim S, Lee YY, Moon M. Therapeutic effects of non-saponin fraction with rich polysaccharide from Korean red ginseng on aging and Alzheimer's disease. Free Radic Biol Med 2021;164:233-48. https://doi.org/10.1016/j.freeradbiomed.2020.12.454
  29. Hong JT, Lee MJ, Yoon SJ, Shin SP, Bang CS, Baik GH, Kim DJ, Youn GS, Shin MJ, Ham YL, Suk KT, Kim BS. Effect of Korea red ginseng on nonalcoholic fatty liver disease: an association of gut microbiota with liver function. J Ginseng Res 2021;45:316-24. https://doi.org/10.1016/j.jgr.2020.07.004
  30. Park SJ, Nam J, Ahn CW, Kim Y. Anti-diabetic properties of different fractions of Korean red ginseng. J Ethnopharmacol 2019;236:220-30. https://doi.org/10.1016/j.jep.2019.01.044
  31. Yi YS. New mechanisms of ginseng saponin-mediated anti-inflammatory action via targeting canonical inflammasome signaling pathways. J Ethnopharmacol 2021;278:114292. https://doi.org/10.1016/j.jep.2021.114292
  32. Baek KS, Yi YS, Son YJ, Yoo S, Sung NY, Kim Y, Hong S, Aravinthan A, Kim JH, Cho JY. In vitro and in vivo anti-inflammatory activities of Korean Red Ginseng-derived components. J Ginseng Res 2016;40:437-44. https://doi.org/10.1016/j.jgr.2016.08.003
  33. Lee SY, Kim MH, Kim SH, Ahn T, Kim SW, Kwak YS, Cho IH, Nah SY, Cho SS, Park KM, Park DH, Bae CS. Korean Red Ginseng affects ovalbumin-induced asthma by modulating IL-12, IL-4, and IL-6 levels and the NF-kappaB/COX-2 and PGE2 pathways. J Ginseng Res 2021;45:482-9. https://doi.org/10.1016/j.jgr.2020.10.001
  34. Lee JH, Min DS, Lee CW, Song KH, Kim YS, Kim HP. Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-kappaB/c-Fos pathways. J Ginseng Res 2018;42:476-84. https://doi.org/10.1016/j.jgr.2017.05.005
  35. Saba E, Jeon BR, Jeong DH, Lee K, Goo YK, Kwak D, Kim S, Roh SS, Kim SD, Nah SY, Rhee MH. A novel Korean red ginseng compound gintonin inhibited inflammation by MAPK and NF-kappaB pathways and recovered the levels of mir-34a and mir-93 in RAW 264.7 cells, vol. 2015. Evid Based Complement Alternat Med; 2015. p. 624132.
  36. Ahn H, Han BC, Hong EJ, An BS, Lee E, Lee SH, Lee GS. Korean Red Ginseng attenuates ultraviolet-mediated inflammasome activation in keratinocytes. J Ginseng Res 2021;45:456-63. https://doi.org/10.1016/j.jgr.2021.02.002
  37. Wang F, Park JS, Ma Y, Ma H, Lee YJ, Lee GR, Yoo HS, Hong JT, Roh YS. Ginseng saponin enriched in Rh1 and Rg2 ameliorates nonalcoholic fatty liver disease by inhibiting inflammasome activation. Nutrients 2021;13.
  38. Ahn H, Han BC, Lee SH, Lee GS. Fructose-arginine, a non-saponin molecule of Korean Red Ginseng, attenuates AIM2 inflammasome activation. J Ginseng Res 2020;44:808-14. https://doi.org/10.1016/j.jgr.2020.06.002
  39. Kim J, Ahn H, Han BC, Lee SH, Cho YW, Kim CH, Hong EJ, An BS, Jeung EB, Lee GS. Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation. Immunol Lett 2014;158:143-50. https://doi.org/10.1016/j.imlet.2013.12.017
  40. Chei S, Oh HJ, Jang H, Lee K, Jin H, Choi Y, Lee BY. Korean red ginseng suppresses the expression of oxidative stress response and NLRP3 inflammasome genes in aged C57BL/6 mouse ovaries. Foods 2020;9.
  41. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  42. Guevara I, Iwanejko J, Dembinska-Kiec A, Pankiewicz J, Wanat A, Anna P, Golabek I, Bartus S, Malczewska-Malec M, Szczudlik A. Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta 1998;274:177-88. https://doi.org/10.1016/S0009-8981(98)00060-6
  43. Lee BL, Stowe IB, Gupta A, Kornfeld OS, Roose-Girma M, Anderson K, Warming S, Zhang J, Lee WP, Kayagaki N. Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J Exp Med 2018;215: 2279-88. https://doi.org/10.1084/jem.20180589
  44. Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM. Caspase-11 cleaves gasdermin D for noncanonical inflammasome signalling. Nature 2015;526:666-71. https://doi.org/10.1038/nature15541
  45. Yun M, Yi YS. Regulatory roles of ginseng on inflammatory caspases, executioners of inflammasome activation. J Ginseng Res 2020;44:373-85. https://doi.org/10.1016/j.jgr.2019.12.006
  46. Ratan ZA, Haidere MF, Hong YH, Park SH, Lee JO, Lee J, Cho JY. Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res 2021;45:199-210. https://doi.org/10.1016/j.jgr.2020.02.004
  47. Lorz LR, Kim D, Kim MY, Cho JY. Panax ginseng-derived fraction BIOGF1K reduces atopic dermatitis responses via suppression of mitogen-activated protein kinase signaling pathway. J Ginseng Res 2020;44:453-60. https://doi.org/10.1016/j.jgr.2019.02.003
  48. Han SY, Kim J, Kim E, Kim SH, Seo DB, Kim JH, Shin SS, Cho JY. AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract. J Ginseng Res 2018;42:496-503. https://doi.org/10.1016/j.jgr.2017.06.003
  49. Yi YS. Roles of ginsenosides in inflammasome activation. J Ginseng Res 2019;43:172-8. https://doi.org/10.1016/j.jgr.2017.11.005
  50. Han BC, Ahn H, Lee J, Jeon E, Seo S, Jang KH, Lee SH, Kim CH, Lee GS. Nonsaponin fractions of Korean Red Ginseng extracts prime activation of NLRP3 inflammasome. J Ginseng Res 2017;41:513-23. https://doi.org/10.1016/j.jgr.2016.10.001
  51. Yi YS. Functional interplay between methyltransferases and inflammasomes in inflammatory responses and diseases. Int J Mol Sci 2021:22.
  52. Yi YS. Caspase-11 noncanonical inflammasome: a novel key player in murine models of neuroinflammation and multiple sclerosis. Neuroimmunomodulation 2021;28:195-203. https://doi.org/10.1159/000516064
  53. Liu M, Zhou K, Xu Z, Ma H, Cao X, Yin X, Zeng W, Zahid A, Fu S, Ni K, Ye X, Zhou Y, Bai L, Zhou R, Jin T. Crystal structure of caspase-11 CARD provides insights into caspase-11 activation. Cell Discov 2020;6:70.
  54. Abu Khweek A, Amer AO. Pyroptotic and non-pyroptotic effector functions of caspase-11. Immunol Rev 2020;297:39-52. https://doi.org/10.1111/imr.12910
  55. Agnew A, Nulty C, Creagh EM. Regulation, activation and function of caspase11 during health and disease. Int J Mol Sci 2021;22.
  56. Ye J, Zeng B, Zhong M, Li H, Xu L, Shu J, Wang Y, Yang F, Zhong C, Ye X, He X, Ouyang D. Scutellarin inhibits caspase-11 activation and pyroptosis in macrophages via regulating PKA signaling. Acta Pharm Sin B 2021;11:112-26. https://doi.org/10.1016/j.apsb.2020.07.014
  57. Lo TH, Chen HL, Yao CI, Weng IC, Li CS, Huang CC, Chen NJ, Lin CH, Liu FT. Galectin-3 promotes noncanonical inflammasome activation through intracellular binding to lipopolysaccharide glycans. Proc Natl Acad Sci U S A 2021:118.