DOI QR코드

DOI QR Code

BandBlock: Bandwidth allocation in blockchain-empowered UAV-based heterogeneous networks

  • Kuna, Venkateswarararao (Department of Computer Science and Engineering, National Institute of Technology Goa) ;
  • Pratik, Kumar (Department of Computer Science and Engineering, National Institute of Technology Goa) ;
  • Akash, Solanki (Department of Computer Science and Engineering, National Institute of Technology Goa) ;
  • Pravati, Swain (Department of Computer Science and Engineering, National Institute of Technology Goa)
  • Received : 2022.05.24
  • Accepted : 2022.10.21
  • Published : 2022.12.10

Abstract

The 5G mobile network is promising to handle the dynamic traffic demands of user equipment (UE). Unmanned aerial vehicles (UAVs) equipped with wireless transceivers can act as flying base stations in heterogeneous networks to ensure the quality of service of UE. However, it is challenging to efficiently allocate limited bandwidth to UE due to dynamic traffic demands and low network coverage. In this study, a blockchain-enabled bandwidth allocation framework is proposed for secure bandwidth trading. Furthermore, the proposed framework is based on the Cournot oligopoly game theoretical model to provide the optimal solution; that is, bandwidth is allocated to different UE based on the available bandwidth at UAV-assisted-based stations (UBSs) with optimal profit. The Cournot oligopoly game is performed between UBSs and cellular base stations (CBSs). Utility functions for both UBSs and CBSs are introduced on the basis of the available bandwidth, total demand of CSBs, and cost of providing cellular services. The proposed framework prevents security attacks and maximizes the utility functions of UBSs and CBSs.

Keywords

References

  1. W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, The road towards 6G: A comprehensive survey, IEEE Open J. Commun. Soc. 2 (2021), 334-366.
  2. J. Kim, G. Casati, N. Cassiau, A. Pietrabissa, A. Giuseppi, D. Yan, E. Calvanese Strinati, M. Thary, D. He, K. Guan, and H. Chung, Design of cellular, satellite, and integrated systems for 5G and beyond, ETRI J. 42 (2020), no. 5, 669-685. https://doi.org/10.4218/etrij.2020-0156
  3. C.-H. Lee, S.-H. Lee, K.-C. Go, S.-M. Oh, J. S. Shin, and J.-H. Kim, Mobile small cells for further enhanced 5G heterogeneous networks, ETRI J. 37 (2015), no. 5, 856-866. https://doi.org/10.4218/etrij.15.2415.0022
  4. P. Yang, Y. Xiao, M. Xiao, and S. Li, 6G wireless communications: Vision and potential techniques, IEEE Netw. 33 (2019), no. 4, 70-75. https://doi.org/10.1109/mnet.2019.1800418
  5. A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-Rodriguez, and J. Yuan, Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges, IEEE Commun. Surv. Tutor. 21 (2019), no. 4, 3417-3442. https://doi.org/10.1109/COMST.2019.2906228
  6. A. Rashid, D. Sharma, T. A. Lone, S. Gupta, and S. K. Gupta, Secure communication in UAV assisted HetNets: a proposed model, (International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage), 2019, pp. 427-440.
  7. J. Ha, J. Kim, and S.-H. Kim, Performance analysis of dynamic spectrum allocation in heterogeneous wireless networks, ETRI J. 32 (2010), no. 2, 292-301. https://doi.org/10.4218/etrij.10.1409.0032
  8. A. Merwaday and I. Guvenc, UAV assisted heterogeneous networks for public safety communications, (IEEE Wireless Communications and Networking Conference Workshops, New Orleans, LA, USA), 2015, pp. 329-334.
  9. M. Mozaffari, A. T. Z. Kasgari, W. Saad, M. Bennis, and M. Debbah, Beyond 5G with UAVs: Foundations of a 3d wireless cellular network, IEEE Trans. Wirel. Commun. 18 (2018), no. 1, 357-372. https://doi.org/10.1109/TWC.2018.2879940
  10. M. D. Nguyen, T. M. Ho, L. B. Le, and A. Girard, UAV placement and bandwidth allocation for UAV based wireless networks, (IEEE Global Communications Conference, Waikoloa, HI, USA), 2019, pp. 1-6.
  11. A. Fouda, A. S. Ibrahim, I. Guvenc, and M. Ghosh, UAV-based in-band integrated access and backhaul for 5G communications, (IEEE 88th Vehicular Technology Conference, Chicago, IL, USA), 2018, pp. 1-5.
  12. V. Chamola, P. Kotesh, A. Agarwal, N. Gupta, and M. Guizani, A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques, Ad hoc Netw. 111 (2021), 102324.
  13. V. Fanibhare, N. I. Sarkar, and A. Al-Anbuky, A survey of the tactile internet: Design issues and challenges, applications, and future directions, Electronics 10 (2021), no. 17, 2171.
  14. T. Alladi, V. Chamola, N. Sahu, and M. Guizani, Applications of blockchain in unmanned aerial vehicles: A review, Veh. Commun. 23 (2020), 100249.
  15. Y. Zuo, S. Jin, and S. Zhang, Blockchain storage, computation offloading, and user association for heterogeneous cellular networks, IEEE Internet Things J. 9 (2021), no. 11, 8191-8204.
  16. Z. Xiao, L. Zhu, Y. Liu, P. Yi, R. Zhang, X.-G. Xia, and R. Schober, A survey on millimeter-wave beamforming enabled UAV communications and networking, IEEE Commun. Surv. Tutor. 24 (2021), no. 1, 557-610.
  17. W. Xu, S. Wang, S. Yan, and J. He, An efficient wideband spectrum sensing algorithm for unmanned aerial vehicle communication networks, IEEE Internet Things J. 6 (2018), no. 2, 1768-1780. https://doi.org/10.1109/jiot.2018.2882532
  18. Y. Li and L. Cai, Uav-assisted dynamic coverage in a heterogeneous cellular system, IEEE Netw. 31 (2017), no. 4, 56-61. https://doi.org/10.1109/MNET.2017.1600280
  19. J.-S. Gomez, A. Vergne, P. Martins, L. Decreusefond, and W. Chen, Cournot-nash equilibria for bandwidth allocation under base-station cooperation, (GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Singapore), 2017, pp. 1-6.
  20. S. He and W. Wang, Multimedia upstreaming cournot game in non-orthogonal multiple access internet of things, IEEE Trans. Netw. Sci. Eng. 7 (2019), no. 1, 398-408.
  21. A. Manzoor and C. S. Hong, Energy efficient resource allocation in UAV-based heterogeneous networks, (20th Asia-Pacific Network Operations and Management Symposium, Matsue, Japan), 2019, pp. 1-4.
  22. Q. Xu, Z. Su, R. Li, K. Asatani, and D. Fang, Game theoretical secure bandwidth allocation in UAV-assisted heterogeneous networks, (IEEE International Conference on Communications, Montreal, Canada), 2021, pp. 1-5.
  23. V. Hassija, V. Saxena, and V. Chamola, A blockchain-based framework for drone-mounted base stations in tactile internet environment, (IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops, Toronto, Canada), 2020, pp. 261-266.
  24. Z. Hu, Z. Zheng, T. Wang, and L. Song, Spectrum trading contract design for UAV assisted offloading in cellular networks, (IEEE International Conference on Communications, Kansas City, MO, USA), 2018, pp. 1-6.
  25. M. Basharat, M. Naeem, Z. Qadir, and A. Anpalagan, Resource optimization in UAV-assisted wireless networks: A comprehensive survey, Trans. Emerg. Telecommun. Technol. 2022 (2022), e4464.
  26. R. Gupta, A. Nair, S. Tanwar, and N. Kumar, Blockchain-assisted secure UAV communication in 6G environment: Architecture, opportunities, and challenges, IET Commun. 15 (2021), no. 10, 1352-1367. https://doi.org/10.1049/cmu2.12113
  27. S. Seo, D.-E. Ko, and J.-M. Chung, Combined time bound optimization of control, communication, and data processing for fsobased 6g uav aerial networks, ETRI J. 42 (2020), no. 5, 700-711. https://doi.org/10.4218/etrij.2020-0210
  28. Y. Zeng and R. Zhang, Energy-efficient UAV communication with trajectory optimization, IEEE Trans. Wirel. Commun. 16 (2017), no. 6, 3747-3760. https://doi.org/10.1109/TWC.2017.2688328
  29. S. M. H. Bamakan, A. Motavali, and A. B. Bondarti, A survey of blockchain consensus algorithms performance evaluation criteria, Expert Syst. Appl. 154 (2020), 113385.
  30. T. Wang, D. Huang, and S. Zhang, Consensus algorithm analysis in Blockchain: PoW and Raft, in Wireless Blockchain: Principles, Technologies and Applications, 2021, Wiley-IEEE Press, pp. 27-72.
  31. Y. Hao, Y. Li, X. Dong, L. Fang, and P. Chen, Performance analysis of consensus algorithm in private blockchain, (IEEE Intelligent Vehicles Symposium, Changshu, China), 2018, pp. 280-285.
  32. A. Muzumdar, C. Modi, G. M. Madhu, and C. Vyjayanthi, A trustworthy and incentivized smart grid energy trading framework using distributed ledger and smart contracts, J. Netw. Comput. Appl. 183 (2021), 103074-103089.