DOI QR코드

DOI QR Code

Development and evaluation of a model-based HSE risk assessment module for HSE management in offshore wind power

해상풍력발전의 HSE 관리를 위한 모델기반 HSE 위험성 평가 모듈 개발 및 평가

  • Received : 2023.10.27
  • Accepted : 2023.12.20
  • Published : 2023.12.31

Abstract

This study provides an in-depth comparison and analysis of various risk assessment models widely used in modern industries, and proposes the most suitable model for risk assessment of offshore wind power in Korea. The assessment models were selected by considering various factors such as the purpose of risk assessment, stakeholder requirements, and characteristics of offshore wind power. We also emphasized the importance of using different risk assessment models in combination in situations of high uncertainty. To systematize the combination of risk assessment models, we used systems engineering which is effective to develop a new system. Systems engineering was used to define the complete, traceable functions from site requirements, and model-based systems engineering was used to manage the design information from requirements to detailed functions in a single model. The developed risk assessment module provide automatic conversion between risk assessment models to enable risk assessment suitable for offshore wind power. The functionality and usability of the offshore wind risk assessment module were verified by the evaluation of three wind power experts.

Keywords

Acknowledgement

이 논문은 에너지기술개발 사업(과제번호: 20213030020130)의 지원을 받아 수행된 연구 결과임을 밝힙니다.

References

  1. Mou, Junmin; Xuefei Jia; Pengfei Chen; Linying Chen. Research on Operation Safety of Offshore Wind Farms. J. Mar. Sci. Eng. 2021, 9(8), 881. 
  2. Brady, Rodney L. Offshore Wind Industry Interorganizational Collaboration Strategies in Emergency Management. PhD diss, Walden University, Minnesota, United States, 2022. 
  3. Stefek, J.; Constant, C.; Clark, C.; Tinnesand, H.; Christol, C.; Baranowski, R. US Offshore Wind Workforce Assessment (No. NREL/TP-5000-81798). National Renewable Energy Laboratory (NREL), Golden, Colorado, United States, 2022. 
  4. 한국선급, [KR R&D] 해상변전소 HSE(Health, safety and Environment) 가이드라인 및 매뉴얼 개발, 한국선급 블로그 https://blog.naver.com/krblog/221456454567, 2019, 접속일자(2022.08.01) 
  5. 한국풍력산업협회, 국내 풍력발전기 설치현황, 2020. 
  6. Hirshorn, Steven R.; Voss, Linda D.,Bromley, Linda K. NASA Systems Engineering Handbook. NASA, 2017, pp.3. 
  7. 제9차 전력수급기본계획, 산업통상자원부, 2020. 
  8. 산업안전보건법 제4장 유해.위험 방지 조치 제36조(위험성평가의 실시), 고용노동부, 2023. 
  9. 사업장 위험성평가에 관한 지침 제1장 제3조(정의) 1, 고용노동부, 2023. 
  10. Offshore oil and gas, https://www.hse.gov.uk/offshore/index.htm (assessed on September 1, 2023). 
  11. Tveiten, C. K.; Albrechtsen, E.; Heggset, J.; Hofmann, M.; Jersin, E.; Leira, B.; Norddal, P. K. HSE challenges related to offshore renewable energy, A18107; SINTEF Technology and Society, Trondheim, Norway, 2011. 
  12. Albrechtsen, E. Occupational safety management in the offshore windindustry-status and challenges, Energy Procedia 2012, Volume 24, pp. 313-321..  https://doi.org/10.1016/j.egypro.2012.06.114
  13. Droste, R.; L sche, C.; Sobiech, C.; B de, E.; Hahn, A. Model-based Risk Assessment Supporting Development of HSE Plans for Safe Offshore Operations, In International Workshop on Formal Methods for Industrial Critical Systems, Berlin, Germany, August 2012; pp. 146-161. 
  14. Adem, A., Colak, A., & Dagdeviren, M. An integrated model using SWOT analysis and Hesitant fuzzy linguistic term set for evaluation occupational safety risks in life cycle of wind turbine, Safety Science 2018, Volume 106, pp. 184-190.  https://doi.org/10.1016/j.ssci.2018.02.033
  15. Ahsan, D.; Pedersen, S.; Nielsen, M. R. B.; Ovesen, J. Why does the offshore wind industry need standardized HSE management systems? An evidence from Denmark. Renew. energy 2019, 136, 691-700.  https://doi.org/10.1016/j.renene.2019.01.034
  16. Categorization of techniques, In IEC 31010:2019, 2nd ed.; Geneva, Switzerland, 2019; pp. 31-118. 
  17. Aust, J.; Pons, D. Bowtie methodology for risk analysis of visual borescope inspection during aircraft engine maintenance, Aerospace 2019, 6(10), 110. 
  18. 권장진, 홍장의, Safety Critical 시스템에서 사고의 예방동작간 충돌 분석 기법, 정보처리학회 논문지, 2(10), pp. 661-668, 2013.  https://doi.org/10.3745/KTSDE.2013.2.10.661
  19. Beim, G. K.; Hobbs, B. F. Event tree analysis of lock closure risks, J. Water Resour. Plan Manag. 1997, 123(3), pp. 137-198.  https://doi.org/10.1061/(ASCE)0733-9496(1997)123:3(169)
  20. 노경륜, 임정열, 목영진, 정영훈, 사건수 분석 기법을 이용한 필댐의 내부 침식 위험도에 대한 지반공학적 시스템 응답 확률 산정, 대한토목학회지, 34(6), pp. 1816-1829, 2014 
  21. 노현정, 박상현, 조수길, 강관구, 김형우, HAZOP을 통한 해양플랜트 흡착식 탈수공정 패키지의 위험성평가 및 안전도 향상 방안, 한국산업융합학회논문집, vol.23, no.4, pp.569-581, 2020. 
  22. Popov, G.; Lyon, B. K.; Hollcroft, B. D. Risk assessment: A practical guide to assessing operational risks, 1st ed.; John Wiley & Sons, New Jersey, United States, 2016. 
  23. 박준영, 김범주, 이재경, 대형 풍력터빈을 위한 무인 원격감시시스템 개발, Journal of Institute of Control, Robotics and Systems, 17(5), pp. 412-418, 2011.  https://doi.org/10.5302/J.ICROS.2011.17.5.412
  24. 한국동서발전(주)_해상풍력단지 일별 발전량 및 풍속 데이터, https://www.data.go.kr/data/15091482/fileData.do, (assessed on December 15, 2021) 
  25. Saud, Y. E.; Israni, K.; & Goddard, J.; Bow-tie diagrams in downstream hazard identification and risk assessment. Process Safety Progress 2014, 33(1), pp. 26-35.  https://doi.org/10.1002/prs.11576
  26. ISO/IEC/IEEE International Standard - Systems and software engineering -- System life cycle processes in ISO/IEC/IEEE 15288, 2015, 
  27. INCOSE. 2007. Systems Engineering Vision 2020. INCOSE-TP-2004-004-02 September, 2007. 
  28. Caitlyn Singam. Model-Based Systems Engineering(MBSE). in SEBoK Editorial Board. 2023. The Guide to the Systems Engineering Body of Knowledge (SEBoK), v. 2.8, R.J. Cloutier (Editor in Chief). Hoboken, NJ: The Trustees of the Stevens Institute of Technology. Accessed [2023-08-23]. www.sebokwiki.org. 
  29. OMG (2023). OMG Systems Modeling Language (OMG SysML), Version 2.0 beta Object Management Group (Technical report, Object Management Group)