DOI QR코드

DOI QR Code

Adansonia digitata L. Stem Bark Attenuates Epileptic Seizure, Depression, and Neurodegeneration by Mediating GABA and Glutamate in Pentylenetetrazol-Kindled Rats

  • 투고 : 2023.08.11
  • 심사 : 2023.11.20
  • 발행 : 2023.12.31

초록

Objectives: Epilepsy is a neurological condition characterized by repeated seizures attributable to synchronous neuronal activity in the brain. The study evaluated the effect of acetone extract of Adansonia digitata stem bark (ASBE) on seizure score, cognition, depression, and neurodegeneration as well as the level of Gamma-Aminobutyrate acid (GABA) and glutamate in Pentylenetetrazol-kindled rats. Methods: Thirty-five rats were assigned into five groups (n = 7). Groups 1-2 received normal saline and 35 mg/kg PTZ every other day. Groups 3-4 received 125 mg/kg and 250 mg/kg ASBE orally while group 5 received 5 mg/kg diazepam daily for twenty-six days. Group 3-5 received PTZ every other day, 30 mins after ASBE and diazepam. Results: The results showed that Pentylenetetrazol (PTZ) induces seizure, reduces mobility time in force swim test and decreases the normal cell number in the brain. It also significantly decreases (p < 0.05) catalase, superoxide dismutase and reduced glutathione activities compared to the ASBE pre-treated rats. Pre-treatment with ASBE reportedly decreases seizure activities significantly (p < 0.05) and increases mobility time in the force swim test. ASBE also significantly elevate (p < 0.05) the normal cell number in the hippocampus, temporal lobe, and dentate gyrus. Conclusion: ASBE reduced seizure activity and prevented depression in PTZ-treated rats. It also prevented neurodegeneration by regulating glutamate and GABA levels in the brain as well as preventing lipid peroxidation.

키워드

과제정보

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

참고문헌

  1. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475-82.  https://doi.org/10.1111/epi.12550
  2. Anwar H, Khan QU, Nadeem N, Pervaiz I, Ali M, Cheema FF. Epileptic seizures. Discoveries (Craiova). 2020;8(2):e110. 
  3. Diniz TC, Silva JC, de Lima-Saraiva SR, de Almeida Ribeiro FPR, Pacheco AG, de Freitas RM, et al. The role of flavonoids on oxidative stress in epilepsy. Oxid Med Cell Longev. 2015;2015: 171756. 
  4. Vannucci Campos D, Lopim GM, da Silva DA, de Almeida AA, Amado D, Arida RM. Epilepsy and exercise: an experimental study in female rats. Physiol Behav. 2017;171:120-6.  https://doi.org/10.1016/j.physbeh.2016.12.040
  5. Audu HA, Ahmed A, Zirahei JV, Dibal NI, Chiroma SM. Anogeissus leiocarpus (DC.) Guill and Perr ameliorates pentylene-tetrazole-induced seizure/cognitive impairment in rats via inhibition of oxidative stress. Adv Tradit Med. 2022;23(3):1199-208.  https://doi.org/10.1007/s13596-022-00672-0
  6. Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci. 2012;Chapter 9:Unit9.37. 
  7. Kucker S, Tollner K, Piechotta M, Gernert M. Kindling as a model of temporal lobe epilepsy induces bilateral changes in spontaneous striatal activity. Neurobiol Dis. 2010;37(3):661-72.  https://doi.org/10.1016/j.nbd.2009.12.002
  8. Andersson K, Ozanne A, Tranberg AE, Chaplin JE, Bolin K, Malmgren K, et al. Socioeconomic outcome and access to care in adults with epilepsy in Sweden: a nationwide cohort study. Seizure. 2020;74:71-6.  https://doi.org/10.1016/j.seizure.2019.12.001
  9. Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med. 2015;5(6): a022426. 
  10. Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna). 2014;121(8):799-817.  https://doi.org/10.1007/s00702-014-1180-8
  11. Hepsomali P, Groeger JA, Nishihira J, Scholey A. Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: a systematic review. Front Neurosci. 2020;14: 923. 
  12. Kamatou GPP, Vermaak I, Viljoen AM. An updated review of Adansonia digitata: a commercially important African tree. South Afri J Bot. 2011;77(4):908-19.  https://doi.org/10.1016/j.sajb.2011.08.010
  13. Sharma BK, Bhat AA, Jain AK. Adansonia digitata L. (Malvaceae) a threatened tree species of medicinal importance. Med Plants. 2015;7(3):173-81.  https://doi.org/10.5958/0975-6892.2015.00025.8
  14. Bellary S, Kyrou I, Brown JE, Bailey CJ. Type 2 diabetes mellitus in older adults: clinical considerations and management. Nat Rev Endocrinol. 2021;17(9):534-48.  https://doi.org/10.1038/s41574-021-00512-2
  15. Silva ML, Rita K, Bernardo MA, de Mesquita MF, Pintao AM, Moncada M. Adansonia digitata L. (Baobab) bioactive compounds, biological activities, and the potential effect on glycemia: a narrative review. Nutrients. 2023;15(9):2170. 
  16. Rahul J, Jain MK, Singh SP, Kamal RK, Anuradha, Naz A, et al. Adansonia digitata L. (baobab): a review of traditional information and taxonomic description. Asian Pac J Trop Biomed. 2015; 5(1):79-84.  https://doi.org/10.1016/S2221-1691(15)30174-X
  17. Ramadan A, Harraz FM, El-Mougy SA. Anti-inflammatory, analgesic and antipyretic effects of the fruit pulp of Adansonia digitate. Fitoterapia. 1994;65(5):418-22. 
  18. Chabi China TF, Olounlade PA, Salifou S. Monographic study of plant species most used for treatment of common diseases of Somba cattle in Benin. J Drug Deliv Ther. 2014;4(5):87-105.  https://doi.org/10.22270/jddt.v4i5.980
  19. Braca A, Sinisgalli C, De Leo M, Muscatello B, Cioni PL, Milella L, et al. Phytochemical profile, antioxidant and antidiabetic activities of Adansonia digitata L. (baobab) from Mali, as a source of health-promoting compounds. Molecules. 2018;23(12):3104. 
  20. Chadare FJ, Linnemann AR, Hounhouigan JD, Nout MJ, Van Boekel MA. Baobab food products: a review on their composition and nutritional value. Crit Rev Food Sci Nutr. 2009;49(3):254-74.  https://doi.org/10.1080/10408390701856330
  21. Yunusa S, Adamu NU, Garkuwa UA, Aliyu A. Anticonvulsant activity of methanol stem bark extract of Adansonia digitata L. (Malvaceae) in rats. Ann Clin Toxicol. 2020;3(1):1026. 
  22. Atuadu V, Benneth BA, Oyem J, Esom E, Mba C, Nebo K, et al. Adansonia digitata L. leaf extract attenuates lead-induced cortical histoarchitectural changes and oxidative stress in the prefrontal cortex of adult male Wistar rats. Drug Metab Pers Ther. 2020. doi: 10.1515/dmdi-2020-0116. [Epub ahead of print] 
  23. Usman HA, Chiroma SM, Zirahei JV, Dibal NI. Adansonia digitata L. fruit shell prevents aluminum-induced cognitive impairment and depression in mice. Brain Behav Immun Integr. 2023;2:100014. 
  24. Slattery DA, Cryan JF. Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protoc. 2012;7(6): 1009-14.  https://doi.org/10.1038/nprot.2012.044
  25. Dibal N, Garba S, Jacks T. Onion peel quercetin attenuates ethanol-induced liver injury in mice by preventing oxidative stress and steatosis. Biomed Res Ther. 2022;9(6):5102-12.  https://doi.org/10.15419/bmrat.v9i6.745
  26. Tourov A, Ferri R, Del Gracco S, Elia M, Musumeci SA, Stefanini MC. Spike morphology in PTZ-induced generalized and cobalt-induced partial experimental epilepsy. Funct Neurol. 1996;11(5):237-45. 
  27. Shimada T, Yamagata K. Pentylenetetrazole-induced kindling mouse model. J Vis Exp. 2018;(136):56573. 
  28. Chen TS, Huang TH, Lai MC, Huang CW. The role of glutamate receptors in epilepsy. Biomedicines. 2023;11(3):783. 
  29. Shehu A, Magaji MG, Yau J, Ahmed A. Antidepressant effect of methanol stem bark extract of Adansonia digitata L. (Malvaceae) in mice. Trop J Nat Prod Res. 2018;2(2):87-91.  https://doi.org/10.26538/tjnpr/v2i2.6
  30. Holmes GL. Cognitive impairment in epilepsy: the role of network abnormalities. Epileptic Disord. 2015;17(2):101-16.  https://doi.org/10.1684/epd.2015.0739
  31. Josephson CB, Lowerison M, Vallerand I, Sajobi TT, Patten S, Jette N, et al. Association of depression and treated depression with epilepsy and seizure outcomes: a multicohort analysis. JAMA Neurol. 2017;74(5):533-9.  https://doi.org/10.1001/jamaneurol.2016.5042
  32. Khalife MR, Scott RC, Hernan AE. Mechanisms for cognitive impairment in epilepsy: moving beyond seizures. Front Neurol. 2022;13:878991. 
  33. Sarlo GL, Holton KF. Brain concentrations of glutamate and GABA in human epilepsy: a review. Seizure. 2021;91:213-27.  https://doi.org/10.1016/j.seizure.2021.06.028
  34. Zayed AA, Seleem MM, Darwish HA, Shaheen AA. Role of long noncoding RNAs; BDNF-AS and 17A and their relation to GABAergic dysfunction in Egyptian epileptic patients. Metab Brain Dis. 2023;38(4):1193-204.  https://doi.org/10.1007/s11011-023-01182-x
  35. Wang W, Wu Y, Li X, Li L, Sun K, Yan S. Altered plasma glutamate and glutamine levels in patients with drug-resistant and drug-responsive symptomatic focal epilepsy. Neurosciences (Riyadh). 2021;26(4):315-22.  https://doi.org/10.17712/nsj.2021.4.20210041
  36. Fadaka AO, Ajiboye BO, Adewale I, Ojo OA, Oyinloye BE, Okesola MA. Significance of antioxidants in the treatment and prevention of neurodegenerative diseases. J Phytopharmacol. 2019;8(2):75-83.  https://doi.org/10.31254/phyto.2019.8210
  37. Franzoni F, Scarfo G, Guidotti S, Fusi J, Asomov M, Pruneti C. Oxidative stress and cognitive decline: the neuroprotective role of natural antioxidants. Front Neurosci. 2021;15:729757.