DOI QR코드

DOI QR Code

Inhibition of Glycation End Products Formation and Antioxidant Activities of Ilex paraguariensis: comparative study of fruit and leaves extracts

  • Laura Cogoi (Pharmacognosy Unit, Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires) ;
  • Carla Marrassini (Pharmacognosy Unit, Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires) ;
  • Elina Malen Saint Martin (Pharmacognosy Unit, Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires) ;
  • Maria Rosario Alonso (Institute of Chemistry and Drug Metabolism (IQUIMEFA), CONICET-University of Buenos Aires) ;
  • Rosana Filip (Pharmacognosy Unit, Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires) ;
  • Claudia Anesini (Pharmacognosy Unit, Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires)
  • 투고 : 2023.08.25
  • 심사 : 2023.11.19
  • 발행 : 2023.12.31

초록

Objectives: Ilex paraguariensis (Aquifoleaceae) is cultivated to produce "yerba mate". Due to its nutritional, energizing, hypoglycemic and antioxidant effects, it is used in the elaboration of food, pharmaceuticals, and cosmetics. The oxidative stress related to protein glycation and production of advanced glycation end products (AGEs) leads to the development of several diseases. The objective of this work was to compare the antioxidant and anti-AGEs activity of a decoction of fruits (F) and leaves (L). Methods: The antioxidant activity was assayed by the DPPH assay and the inhibition of egg yolk lipid peroxidation (ILP), and anti-AGEs activity, through the inhibition of the formation of fructosamine (IF), β-amyloid (Iβ), protein carbonylation (IC) and AGEs (IA). Polyphenols were quantified by HPLC. Results: Maximum response ± SEM: For F 0.01 ㎍/mL: IF = 42 ± 4%, IC = 17 ± 2% and for 10 ㎍/mL: IA = 38 ± 4%, Iβ = 67 ± 7%. For L 0.1 ㎍/mL: IF = 35 ± 2%, IC = 19 ± 2% and for 100 ㎍/mL: IA = 26 ± 3%, Iβ = 63.04 ± 2%. The DPPH IC50 = 134.8 ± 14 ㎍/mL for F and 34.67 ± 3 ㎍/mL for L. The ILP IC50 = 512.86 ± 50 ㎍/mL for F and 154.8 ± 15 ㎍/mL for L. By HPLC L presented the highest amounts of flavonoids and caffeoylquinic acids. F and L showed strong anti-AGEs activity, affecting the early stages of glycation at low concentrations and the late stages of glycation at high concentrations. The highest activity for both F and L was seen in the IF and Iβ. F presented the highest anti-AGEs potency. L presented the highest antioxidant potency, which was related to the highest content of polyphenols. Conclusion: The fruits of I. paraguariensis could be a source of antioxidant and anti-AGEs compounds to be used with medicinal purposes or as functional food.

키워드

과제정보

This work was supported by PIP 00067 from CONICET and UBACYT 20020130100686BA from Universidad de Buenos Aires.

참고문헌

  1. Ministerio de Hacienda Presidencia de la Nacion. Informes de cadenas de valor. Buenos Aires: Ministerio de Hacienda Presidencia de la Nacion; 2018. 1-28 p.
  2. Correa VG, Goncalves GA, de Sa-Nakanishi AB, Ferreira ICFR, Barros L, Dias MI, et al. Effects of in vitro digestion and in vitro colonic fermentation on stability and functional properties of yerba mate (Ilex paraguariensis A. St. Hil.) beverages. Food Chem. 2017;237:453-60. https://doi.org/10.1016/j.foodchem.2017.05.125
  3. Gerber T, Nunes A, Moreira BR, Maraschin M. Yerba mate (Ilex paraguariensis A. St.-Hil.) for new therapeutic and nutraceutical interventions: a review of patents issued in the last 20 years (2000-2020). Phytother Res. 2023;37(2):527-48. https://doi.org/10.1002/ptr.7632
  4. Bracesco N. Ilex paraguariensis as a healthy food supplement for the future world. Biomed J Sci Tech Res. 2019;16(1):11821-3. https://doi.org/10.26717/BJSTR.2019.16.002808
  5. Masson W, Barbagelata L, Lobo M, Nogueira JP, Corral P, Lavalle-Cobo A. Effect of yerba mate (Ilex paraguariensis) on Lipid Levels: a systematic review and meta-analysis. Plant Foods Hum Nutr. 2022;77(3):353-66. https://doi.org/10.1007/s11130-022-00991-2
  6. Codigo Alimentario Argentino. Ley 18284, Decreto N° 2126/71 reglamentario de la Ley 18.284 [Internet]. Buenos Aires: Administracion Nacional de Medicamentos, Alimentos y Tecnologia Medica; June 30, 1971 [cited 2022 Nov 29]. Available from: https://www.argentina.gob.ar/anmat/codigoalimentario.
  7. Administracion Nacional de Medicamentos, Alimentos y Tecnologia Medica (ANMAT). Farmacopea Argentina. 7th ed. Buenos Aires: ANMAT; 2013. 514-7 p.
  8. do Espirito Santo AT, Siqueira LM, Almeida RN, Vargas RMF, do N Franceschini G, Kunde MA, et al. Decaffeination of yerba mate by supercritical fluid extraction: improvement, mathematical modelling and infusion analysis. J Supercrit Fluids. 2021;168: 105096.
  9. Filip R, Lopez P, Giberti G, Coussio J, Ferraro G. Phenolic compounds in seven South American Ilex species. Fitoterapia. 2001;72(7):774-8. https://doi.org/10.1016/S0367-326X(01)00331-8
  10. Bojic M, Simon Haas V, Saric D, Males Z. Determination of flavonoids, phenolic acids, and xanthines in mate tea (Ilex paraguariensis St.-Hil.). J Anal Methods Chem. 2013;2013:658596.
  11. Cogoi L, Silvia Giacomino M, Pellegrino N, Anesini C, Filip R. Nutritional and phytochemical study of Ilex paraguariensis fruits. J Chem. 2013;2013:750623.
  12. McPherson JD, Shilton BH, Walton DJ. Role of fructose in glycation and cross-linking of proteins. Biochemistry. 1988;27(6): 1901-7. https://doi.org/10.1021/bi00406a016
  13. Baker JR, Metcalf PA, Johnson RN, Newman D, Rietz P. Use of protein-based standards in automated colorimetric determinations of fructosamine in serum. Clin Chem. 1985;31(9):1550-4. https://doi.org/10.1093/clinchem/31.9.1550
  14. Mukherjee S, Phatak D, Parikh J, Jagtap S, Shaikh S, Tupe R. Antiglycation and antioxidant activity of a rare medicinal orchid Dendrobium aqueum Lindl. Med Chem Drug Discovery. 2012;2(2):46-54.
  15. Sattarahmady N, Moosavi-Movahedi AA, Ahmad F, Hakimelahi GH, Habibi-Rezaei M, Saboury AA, et al. Formation of the molten globule-like state during prolonged glycation of human serum albumin. Biochim Biophys Acta. 2007;1770(6):933-42. https://doi.org/10.1016/j.bbagen.2007.02.001
  16. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT. 1995;28(1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  17. Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem. 1966;16(2):359-64. https://doi.org/10.1016/0003-2697(66)90167-9
  18. Ijaz K, Bahoo MLA, Niaz S, Ahmad HU. Glycated albumin and angiopoietin-2: possible indicators of diabetic retinopathy in type-two diabetes. Pak J Med Sci. 2022;38(8):2202-7. https://doi.org/10.12669/pjms.38.8.5579
  19. Barnaby OS, Cerny RL, Clarke W, Hage DS. Comparison of modification sites formed on human serum albumin at various stages of glycation. Clin Chim Acta. 2011;412(3-4):277-85. https://doi.org/10.1016/j.cca.2010.10.018
  20. Vetter SW, Indurthi VS. Moderate glycation of serum albumin affects folding, stability, and ligand binding. Clin Chim Acta. 2011;412(23-24):2105-16. https://doi.org/10.1016/j.cca.2011.07.022
  21. Gugliucci A, Menini T. The botanical extracts of Achyrocline satureoides and Ilex paraguariensis prevent methylglyoxal-induced inhibition of plasminogen and antithrombin III. Life Sci. 2002;72(3):279-92. https://doi.org/10.1016/S0024-3205(02)02242-7
  22. Lunceford N, Gugliucci A. Ilex paraguariensis extracts inhibit AGE formation more efficiently than green tea. Fitoterapia. 2005;76(5):419-27. https://doi.org/10.1016/j.fitote.2005.03.021
  23. Gugliucci A, Stahl AJ. Low density lipoprotein oxidation is inhibited by extracts of Ilex paraguariensis. Biochem Mol Biol Int. 1995;35(1):47-56.
  24. Filip R, Lotito S, Ferraro G, Fraga CG. Antioxidant activity of Ilex paraguariensis and related species. Nutr Res. 2000;20(10): 1437-46. https://doi.org/10.1016/S0271-5317(00)80024-X
  25. Menini T, Heck C, Schulze J, de Mejia E, Gugliucci A. Protective action of Ilex paraguariensis extract against free radical inactivation of paraoxonase-1 in high-density lipoprotein. Planta Med. 2007;73(11):1141-7. https://doi.org/10.1055/s-2007-981585
  26. Anesini C, Ferraro G, Filip R. Peroxidase-like activity of Ilex paraguariensis. Food Chem. 2006;97(3):459-64. https://doi.org/10.1016/j.foodchem.2005.05.025
  27. Turner S, Cogoi L, Isolabella S, Filip R, Anesini C. Evaluation of the antioxidant activity and polyphenols content of Ilex paraguariensis (mate) during industrialization. Adv J Food Sci Technol. 2011;3(1):23-30.
  28. Peralta IN, Cogoi L, Filip R, Anesini C. Prevention of hydrogen peroxide-induced red blood cells lysis by Ilex paraguariensis aqueous extract: participation of phenolic and xanthine compounds. Phytother Res. 2013;27(2):192-8. https://doi.org/10.1002/ptr.4700
  29. Peixoto MP, Kaiser S, Verza SG, de Resende PE, Treter J, Pavei C, et al. LC-UV assay method and UPLC/Q-TOF-MS characterisation of saponins from Ilex paraguariensis A. St. Hil. (mate) unripe fruits. Phytochem Anal. 2012;23(4):415-20. https://doi.org/10.1002/pca.1374
  30. Borre GL, Kaiser S, Pavei C, da Silva FA, Bassani VL, Ortega GG. Comparison of methylxanthine, phenolics and saponin contents in leaves, branches and unripe fruits from Ilex paraguariensis A. ST.-hil (mate). J Liq Chromatogr Relat Technol. 2010;33(3):362-74.
  31. Chen H, Virk MS, Chen F. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures. Int J Food Sci Nutr. 2016;67(4):400-11. https://doi.org/10.3109/09637486.2016.1166187
  32. Yang F Jr, Zhang M, Zhou BR, Chen J, Liang Y. Oleic acid inhibits amyloid formation of the intermediate of alpha-lactalbumin at moderately acidic pH. J Mol Biol. 2006;362(4):821-34. https://doi.org/10.1016/j.jmb.2006.07.059