DOI QR코드

DOI QR Code

Thermal Analyses of Deep Geological Disposal Cell With Heterogeneous Modeling of PLUS7 Spent Nuclear Fuel

  • Received : 2023.08.22
  • Accepted : 2023.09.19
  • Published : 2023.12.30

Abstract

The objectives of this paper are: (1) to conduct the thermal analyses of the disposal cell using COMSOL Multiphysics; (2) to determine whether the design of the disposal cell satisfies the thermal design requirement; and (3) to evaluate the effect of design modifications on the temperature of the disposal cell. Specifically, the analysis incorporated a heterogeneous model of 236 fuel rod heat sources of spent nuclear fuel (SNF) to improve the reality of the modeling. In the reference case, the design, featuring 8 m between deposition holes and 30 m between deposition tunnels for 40 years of the SNF cooling time, did not meet the design requirement. For the first modified case, the designs with 9 m and 10 m between the deposition holes for the cooling time of 40 years and five spacings for 50 and 60 years were found to meet the requirement. For the second modified case, the designs with 35 m and 40 m between the deposition tunnels for 40 years, 25 m to 40 m for 50 years and five spacings for 60 years also met the requirement. This study contributes to the advancement of the thermal analysis technique of a disposal cell.

Keywords

Acknowledgement

This work was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (Ministry of Trade, Industry and Energy (MOTIE)) (No. 2021040101003C).

References

  1. H.J. Yun, M.H. Han, and S.Y. Cho, "Nuclear Criticality Analyses of Two Different Disposal Canisters for Deep Geological Repository Considering Burnup Credit", J. Nucl. Fuel Cycle Waste Technol., 20(4), 501-510 (2022). https://doi.org/10.7733/jnfcwt.2022.038
  2. Svensk Karnbranslehantering AB and Posiva Oy. Safety Functions, Performance Targets and Technical Design Requirements for a KBS-3V Repository-Conclusions and Recommendations From a Joint SKB and Posiva Working Group, Posiva SKB Report 01, 39-65, ISSN 2489-2742 (2017).
  3. P. Wersin, L.H. Johnson, and I.G. McKinley, "Performance of the Bentonite Barrier at Temperatures Beyond 100℃: A Critical Review", Phys. Chem. Earth, 32(8-14), 780-788 (2007).
  4. K. Ikonen, J. Kuutti, and H. Raiko. Thermal Dimensioning for the Olkiluoto Repository- 2018 Update, Posiva Working Report, 7-11, 2018-26 (2018).
  5. H.J. Yun, J.B. Shin, C.Y. Song, and K.H. Park, "Thermal Analyses of TN-24P Dry Storage Cask With Heterogeneous Fuel Assembly Modeling", Prog. Nucl. Energy, 137, 103771 (2021).
  6. COMSOL, Inc., COMSOL Multiphysics Reference Manual, Version COMSOL 6.1., 41-42 (2022).
  7. H. Raiko. Canister Design 2012, Posiva Oy Report, 37-47, POSIVA 2012-13 (2013).
  8. T. Jalonen, L. Nolvi, B. Pastina, J. Pitkanen, T. Salonen, and H. Raiko. Canister Production Line 2012 - Design, Production and Initial State of the Canister, Posiva Oy Report, 23-35, POSIVA 2012-16 (2012).
  9. M. Juvankoski. Buffer Design 2012, Posiva Oy Report, 21-51, POSIVA 2012-14 (2013).
  10. M. Juvankoski, K. Ikonen, and T. Jalonen. Buffer Production Line 2012 - Design, Production and Initial State of the Canister, Posiva Oy Report, 35-43, POSIVA 2012-17 (2012).
  11. J. Autio, M.M. Hassan, P. Karttunen, and P. Keto. Backfill Design 2012, Posiva Oy Report, 25-44, POSIVA 2012-15 (2013).
  12. P. Keto, M.M. Hassan, P. Karttunen, L. Kiviranta, S. Kumpulainen, L. Korkiala-Tanttu, V. Koskinen, T. Jalonen, P. Koho, and U. Sievanen. Backfill Production Line 2012-Design, Production and Initial State of the Deposition Tunnel Backfill and Plug, Posiva Oy Report, 25-38, POSIVA 2012-18 (2013).
  13. A.S. Al Awad, A. Habashy, and W.A. Metwally, "Sensitivity Studies in Spent Fuel Pool Criticality Safety Analysis for APR-1400 Nuclear Power Plants", Nucl. Eng. Technol., 50(5), 709-716 (2018). https://doi.org/10.1016/j.net.2018.03.022
  14. ANSYS, Inc., ANSYS Meshing User's Guide, Release 13.0, 101-119, Canonsburg, Pennsylvania (2010).
  15. J.E. Brancheau, Practical Aspects of Finite Element Simulation - A Study Guide, 5th ed., 288-325, Altair Engineering, Inc., Michigan (2019).
  16. X. Pintado and E. Rautioaho. Thermo-Hydraulic Modelling of Buffer and Backfill, Posiva Oy Report, 9-54, POSIVA 2012-48 (2013).
  17. Posiva Oy, Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto - Models and Data for the Repository System 2012, 695-719, POSIVA 2013-01 (2013).
  18. Y.H. Kim, C.W. Kwon, M.S. Kim, E.K. Kim, T.H. Kim, H.C. Kim, W.H. Nam, I.H. Park, H.J. Suk, W.K. Song, K.C. Yang, B.C. Lee, S.K. Lee, Y.M. Lee, B.J. Jung, G.M. Jin, B.G. Chae, D.S. Cheon, and S.P. Hyun. Research on Rock Properties in Deep Environment for HLW Geological Disposal, Korea Institute of Geoscience and Mineral Resources Report, 229-260, GP2020-002-2021 (2021).
  19. J.M. Park, H.C. Kim, Y.M. Lee, B.O. Shim, and M.Y. Song, "Thermal Properties of Rocks in the Republic of Korea", Econ. Environ. Geol., 42(6), 591-598 (2009).
  20. COMSOL, Inc., Heat Transfer Module User's Guide, Version COMSOL 6.1., 167-180 (2022).
  21. W.G. Luscher, K.J. Geelhood, and I.E. Porter. Material Property Correlations: Comparisons Between FRAPCON-4.0, FRAPTRAN-2.0, and MATPRO, Pacific Northwest National Laboratory Report, 2.1-3.32, PNNL-19417 Rev. 2 (2015).
  22. International Atomic Energy Agency, Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data, 24-34, ISBN 978-92-0-106508-7, Vienna (2008).
  23. L.J. Siefken, E.W. Coryell, E.A. Harvego, and J.K. Hohorst. SCDAP/RELAP5/MOD 3.3 Code Manual: MATPRO-A Library of Materials Properties for Light-Water-Reactor Accident Analysis (NUREG/CR-6150 Vol. 4 Rev. 2), U.S. Nuclear Regulatory Commission Report, 2-1 - 2-171, INEL-96/0422 (2001).
  24. K. Ikonen. Temperatures Inside SKB and Posiva Type Disposal Canisters for Spent Fuel, 13-27, Posiva SKB Report 12 (2020).
  25. H.C. Kim and M.Y. Song, "A Study on the Effective Utilization of Temperature Logging Data for Calculating Geothermal Gradient", Econ. Environ. Geol., 32(5), 503-517 (1999).
  26. H.J. Yun, D.Y. Kim, K.H. Park, and S.G. Hong, "A Criticality Analysis of the GBC-32 Dry Storage Cask With Hanbit Nuclear Power Plant Unit 3 Fuel Assemblies From the Viewpoint of Burnup Credit", Nucl. Eng. Technol., 48(3), 624-634 (2016). https://doi.org/10.1016/j.net.2016.01.011