DOI QR코드

DOI QR Code

Comparison of Environmental Radiation Survey Analysis Results in a High Dose Rate Environment Using CZT, NaI(Tl), and LaBr3(Ce) Detectors

  • Received : 2023.10.13
  • Accepted : 2023.11.07
  • Published : 2023.12.30

Abstract

Currently, Japan is undertaking a nationwide project to measure and map radioactive contamination around Fukushima, as part of the efforts to restore normalcy following the nuclear accident. The Japan Atomic Energy Agency (JAEA) manages the Fukushima Environmental Safety Center, located approximately 20 km north of the Fukushima Daiichi nuclear power plant in Minamisōma City, Fukushima Prefecture. In collaboration with the JAEA, this study involved conducting comparison experiments and analyses with radiation detectors in high radiation environments, a challenging task in Korean environments. Environmental radiation surveys were conducted using three types of detectors: CZT, NaI(Tl), and LaBr3(Ce), across two contaminated areas. Dose rate values were converted using dose rate conversion factors for each detector type, and dose rate maps were subsequently created and compared. The detectors yielded similar results, demonstrating their feasibility and reliability in high radiation environments. The findings of this study are expected to be a crucial reference for enhancing the verification and supplementation of procedures and methods in future radiation measurements and mobile surveys in high-radiation environments, using these three types of radiation instruments.

Keywords

Acknowledgement

This work was performed under the auspices of the Ministry of Science and ICT (MSIT) of Korea, NRF contract number RS-2022-00144210. We are very grateful to the Environmental Monitoring Group, Fukushima, Japan Atomic Energy Agency, and the Environmental Safety Research Division for their help with the planning and execution of the experiment.

References

  1. K. Saito, I. Tanihata, M. Fujiwara, T. Saito, S. Shimoura, T. Otsuka, Y. Onda, M. Hoshi, Y. Ikeuchi, F. Takahashi, N. Kinouchi, J. Saegusa, A. Seki, H. Takemiya, and T. Shibata, "Detailed Deposition Density Maps Constructed by Large-scale Soil Sampling for Gamma-ray Emitting Radioactive Nuclides From the Fukushima Dai-ichi Nuclear Power Plant Accident", J. Environ. Radioact., 139, 308-319 (2015). 
  2. S. Mikami, T. Maeyama, Y. Hoshide, R. Sakamoto, S. Sato, N. Okuda, S. Demongeot, R. Gurriaran, Y. Uwamino, H. Kato, M. Fujiwara, T. Sato, H. Takemiya, and K. Saito, "Spatial Distributions of Radionuclides Deposited Onto Ground Soil Around the Fukushima Dai-ichi Nuclear Power Plant and Their Temporal Change Until December 2012", J. Environ. Radioact., 139, 320-343 (2015). 
  3. A. Vargas, D. Costa, M. Macias, P. Royo, E. Pastor, M. Luchkov, S. Neumaier, U. Stohlker, and R. Luff, "Comparison of Airborne Radiation Detectors Carried by Rotary-wing Unmanned Aerial Systems", Radiat. Meas., 145, 106595 (2021). 
  4. Y. Sanada, T. Sugita, Y. Nishizawa, A. Kondo, and T. Torii , "The Aerial Radiation Monitoring in Japan After the Fukushima Daiichi Nuclear Power Plant Accident", Prog. Nucl. Sci. Technol., 4, 76-80 (2014). 
  5. S. Joung, Y.Y. Ji, and Y. Choi, "Development of an Airborne Gamma-ray Spectrometer Based on a CZT Detector", J. Instrum., 16(10), 10033 (2021). 
  6. P. N. Luke, M. Amman, J.S. Lee, B.A. Ludewigt, and H. Yaver. "A Cdznte Coplanar-Grid Detector Array for Environmental Remediation", Nucl. Instrum. Methods Phys. Res., 458(1-2), 319-324 (2001).  https://doi.org/10.1016/S0168-9002(00)00876-7
  7. P.N. Luke, "Unipolar Charge Sensing With Coplanar Electrodes-Application to Semiconductor Detectors", IEEE Trans. Nucl. Sci., 42(4), 207-213 (1995).  https://doi.org/10.1109/23.467848
  8. M.D. Wilson, R. Cernik, H. Chen, C. Hansson, K. Iniewski, L.L. Jones, P. Seller, and M.C. Veale, "Small Pixel CZT Detector for Hard X-Ray Spectroscopy", Nucl. Instrum. Methods Phys. Res., 652(1), 158-161 (2011).  https://doi.org/10.1016/j.nima.2011.01.144
  9. H. Chen, S.A. Awadalla, F. Harris, P. Lu, R. Redden, G. Bindley, A. Copete, J. Hong, J. Grindlay, M. Amman, J.S. Lee, P. Luke, I. Kuvvetli, and C.B. Jorgensen, "Spectral Response of THM Grown CdZnTe Crystals", IEEE Trans. Nucl. Sci., 55(3), 1567-1572 (2008).  https://doi.org/10.1109/TNS.2008.924089
  10. P.G. Martin, O.D. Payton, J.S. Fardoulis, D.A. Richards, and T.B. Scott, "The Use of Unmanned Aerial Systems for the Mapping of Legacy Uranium Mines", J. Environ. Radioact., 143, 135-140 (2015). 
  11. P.J. Sellin, "Recent Advances in Compound Semiconductor Radiation Detectors", Nucl. Instrum. Methods Phys. Res., 513(1-2), 332-339 (2003).  https://doi.org/10.1016/j.nima.2003.08.058
  12. Q. Zhang, C. Zhang, Y. Lu, K. Yang, and Q. Ren, "Progress in the Development of CdZnTe Unipolar Detectors for Different Anode Geometries and Data Corrections", Sensors, 13(2), 2447-2474 (2013).  https://doi.org/10.3390/s130202447
  13. K.S. Shah, J. Glodo, M. Klugerman, W.W. Moses, S.E. Derenzo, and M.J. Weber., "LaBr3:Ce Scintillators for Gamma Ray Spectroscopy", IEEE Trans. Nucl. Sci., 50(6), 2410-2413 (2003). 
  14. A. Bolsunovsky and D. Dementyev, "Evidence of the Radioactive Fallout in the Center of Asia (Russia) Following the Fukushima Nuclear Accident", J. Environ. Radioact., 102(11), 1062-1064 (2011).  https://doi.org/10.1016/j.jenvrad.2011.06.007
  15. W. Ji, Y.Y. Ji, S. Joung, E. Lee, and Y. Choi. 2022 Joint Environmental Radiation Survey Around the Fukushima Restricted Area With JAEA: Ground-base and Mobile γ-ray Spectrometry Using Backpack and Carborne Survey, Korea Atomic Energy Technical Report, KAERI/TR-9558/2022 (2022). 
  16. Y.Y. Ji, H.Y. Choi, W. Lee, C.J. Kim, H.S. Chang, and K.H. Chung, "Application of a LaBr3(Ce) Scintillation Detector to an Environmental Radiation Monitor", IEEE Trans. Nucl. Sci., 65(8), 2021-2028 (2018).  https://doi.org/10.1109/TNS.2018.2823322
  17. Y.Y. Ji, M. Jang, K. Chung, and M. Kang. Technical Status of the Environmental Radiation Survey and Its Application to the Contaminated Area: The 1st Environmental Radiation Survey Around the Fukushima Prefecture, Korea Atomic Energy Technical Report, 25-29, KAERI/TR-7610/2019 (2019).