DOI QR코드

DOI QR Code

다양한 첨가제에 따른 고투과성 역삼투막의 특성평가

Evaluation of the Characteristics of High-Flux Reverse Osmosis Membranes with Various Additives

  • 권현웅 (경상국립대학교 나노신소재융합공학과) ;
  • 임광섭 (경상국립대학교 나노신소재융합공학과) ;
  • 위자야 게데 헤리 아룸 (경상국립대학교 나노신소재융합공학과) ;
  • 한성민 (경상국립대학교 나노신소재융합공학과) ;
  • 김성헌 (경상국립대학교 나노신소재융합공학과) ;
  • 박준호 (경상국립대학교 나노신소재융합공학과) ;
  • 이동준 (경상국립대학교 나노신소재융합공학과) ;
  • 엄상민 (경상국립대학교 고분자공학과) ;
  • 남상용 (경상국립대학교 나노신소재융합공학과)
  • Hyun Woong Kwon (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kwang Seop Im (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Gede Herry Arum Wijaya (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Seong Min Han (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Seong Heon Kim (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Jun Ho Park (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Dong Jun Lee (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Sang Min Eom (Department of Polymer Science & Engineering School of Materials Science & Engineering, Gyeongsang National University) ;
  • Sang Yong Nam (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 투고 : 2023.12.08
  • 심사 : 2023.12.19
  • 발행 : 2023.12.31

초록

본 연구에서는 고투과성 및 높은 염 제거율을 가지는 역삼투막의 성능향상을 위하여 다양한 첨가제 및 계면중합 시 경화 온도 및 시간에 따른 특성평가에 대한 연구가 수행되었다. 첨가제가 없는 막과 첨가제를 첨가한 막의 모폴로지는 모두 "ridge-and-valley" 구조를 나타내어, 폴리아미드 층이 다공성 지지층 표면에 성공적으로 중합되었음을 확인하였다. 또한 2-Ethyl-1,3-hexanediol (EHD) 첨가함으로써 향상된 친수성과 수투과율 가졌으며, 이는 접촉각 측정을 통해서 확인되었다. 최종적으로 97.78%와 98.7%의 NaCl 및 MgSO4 제거율과 3.31 L/(m2⋅h⋅bar)의 높은 수투과율을 가진 고투과성 계면중합막을 제조하였다.

In this study, in order to improve the performance of the reverse osmosis membrane with high water flux and high salt rejection, a study was conducted on the evaluation of characteristics according to the curing temperature and time during various additives and interfacial polymerization. The morphology of the membrane with no additives and the membrane with additives both showed a "rigid-and-valley" structure, confirming that the polyamide layer was successfully polymerized on the surface of the porous support layer. In addition, the additive of 2-Ethyl-1,3-hexanediol (EHD) had improved hydrophilicity and water flux, which was confirmed by measuring the contact angle. Finally, a highly permeable TFC membrane with NaCl and MgSO4 salt rejection of 97.78% and 98.7% and a high water flux of 3.31 L/(m2⋅h⋅bar) was prepared.

키워드

과제정보

이 논문은 2023년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임 (NRF- 2020R1A6A1A03038697) 그리고 이 연구는 2023년도 산업통상자원부 및 한국산업기술기획평가원(KEIT) 연구비 지원에 의한 연구임(20019441). 또한 본 연구에서 사용된 UF 지지체를 제공해준 (주)도레이 첨단소재에 감사 인사를 전함.

참고문헌

  1. S. Lim, V. H. Tran, N. Akther, S. Phuntsho, and H. K. Shon, "Defect-free outer-selective hollow fiber thin-film composite membranes for forward osmosis applications", J. Membr. Sci., 586, 281-291 (2019).  https://doi.org/10.1016/j.memsci.2019.05.064
  2. N. P. B. Tan, P. M. L. Ucab, G. C. Dadol, L. M. Jabile, I. N. Talili, and M. T. I. Cabaraban, "A review of desalination technologies and its impact in the Philippines", Desalination, 534, 115805 (2022). 
  3. Z. Ma, H. Chang, Y. Liang, Y. Meng, L. Ren, and H. Liang, "Research progress and trends on state-of-the-art membrane technologies in textile wastewater treatment", Sep. Purif. Technol., 333, 125853 (2023). 
  4. I. G. Wenten and Khoiruddin, "Reverse osmosis applications: Prospect and challenges", Desalination., 391, 112-125 (2016).  https://doi.org/10.1016/j.desal.2015.12.011
  5. S. H. Kim, K. S. Im, J. H. Kim, H. C. Koh and S. Y. Nam, "Preparation and characterization of nanofiltration membrane for recycling alcoholic organic solvent", Membr. J., 31, 228-240 (2021).  https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.3.228
  6. K. S. Im, T. H. Kim, J. Y. Jang, and S. Y. Nam, "Evaluation of chemical resistance and cleaning efficiency characteristics of multi bore PSf hollow fiber membrane", Membr. J., 30, 138-148 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.2.138
  7. B. H Jeong, E. M. V. Heok, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A. K. Ghosh, and A. Jawor, "Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes", J. Membr. Sci., 294, 1-7 (2007).  https://doi.org/10.1016/j.memsci.2007.02.025
  8. V. Vatanpour, S. Mahdiei, O. O. Teber, and I. Koyuncu, "Permeability improvement of reverse osmosis membranes by addition of dimethyl sulfoxide in the interfacial polymerization media", React Funct Polym., 181, 105436 (2022). 
  9. R. J. Petersen, "Composite reverse osmosis and nanofiltration membranes", J. Membr. Sci., 83, 81-150 (1993).  https://doi.org/10.1016/0376-7388(93)80014-O
  10. J. Farahbaksh, M. Delnavaz, and V. Vatanpour, "Investigation of raw and oxidized multiwalled carbon nanotubes in fabrication of reverse osmosis polyamide membranes for improvement in desalination and antifouling properties," Desalination, 410, 1-9 (2017).  https://doi.org/10.1016/j.desal.2017.06.022
  11. X. Li, Z. Wang, X. Han, Y. Liu, C. Wang, F. Yan, and J. Wang, "Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review", J. Membr. Sci., 640, 119765 (2021). 
  12. D. Li, Y. Yan, and H. Wang, "Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes", Prog. Polym. Sci., 61. 104-155 (2016).  https://doi.org/10.1016/j.progpolymsci.2016.03.003
  13. T. A. Otitoju, R. A. Saari, and A. L. Ahmad, "Progress in the modification of reverse osmosis (RO) membranes for enhanced performance", J. Ind. Eng. Chem., 67, 52-71 (2018).  https://doi.org/10.1016/j.jiec.2018.07.010
  14. Y. K. Lee and R. Patel, "Two dimensional (2D) nanomaterials based composite membrane for desalination", Membr. J., 30, 111-123 (2020).  https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.2.111
  15. T. H. Lee, H. D. Lee, and H. B. Park, "Current research trends in polyamide based nanocomposite membranes for desalination", Membr. J., 26, 351-364 (2016).  https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.351
  16. B. Khorshidi, T. Thundat, D. Pernitsky, and M. Sadrzadeh, "A parametric study on the synergistic impacts of chemical additives on permeation properties of thin film composite polyamide membrane", J. Membr. Sci., 535, 248-257 (2017).  https://doi.org/10.1016/j.memsci.2017.04.052
  17. V. Vahid, M. Sheydaei, and M. Esmaeili, "Box-Behnken design as a systematic approach to inspect correlation between synthesis conditions and desalination performance of TFC RO membranes", Desalination, 420, 1-11 (2017).  https://doi.org/10.1016/j.desal.2017.06.022
  18. A. Rahimpour, M. Jahanshahi, M. Peyravi, and S. Khalili, "Interlaboratory studies of highly permeable thin-film composite polyamide nanofiltration membrane", Polym Adv Technol, 23, 884-893 (2012).  https://doi.org/10.1002/pat.1984
  19. Y. Liu, W. Yan, Z. Wang, H. Wang, S. Zhao, J. Wang, P. Zhang, and X. Cao, "1-methylimidazole as a novel additive for reverse osmosis membrane with high flux-rejection combinations and good stability", J. Membr. Sci., 599, 117830 (2020). 
  20. Y. Liu, X. Dong, M. Wang, S. Guo, H. Zhang, and Z. Wang, "Modulating interfacial polymerization via 1-methylimidazole as reactive additive for nanofiltration membrane with high-performance", Desalination, 568, 117021 (2023). 
  21. I. C. Kim, B. R. Jeong, S. J. Kim, and K. H. Lee, "Preparation of high flux thin film composite polyamide membrane: The effect of alkyl phosphate additives during interfacial polymerization", Desalination, 308, 111-114 (2013).  https://doi.org/10.1016/j.desal.2012.08.001
  22. R. Ma, Y. L. Ji, X. D. Weng, Q. F. An, and C. J. Gao, "High-flux and fouling-resistant reverse osmosis membrane prepared with incorporating zwitterionic amine monomers via interfacial polymerization", Desalination, 381, 100-110 (2016).  https://doi.org/10.1016/j.desal.2015.11.023
  23. A. K. Ghosh, B. H. Jeong, X. Huang, and E. M. V. Hoek, "Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties", J. Membr. Sci., 311, 34-45 (2008).  https://doi.org/10.1016/j.memsci.2007.11.038
  24. Y. Wang, M. Dong, X. Xiong, X. Gai, J. Zeng, G. Luan, Y. Wang, Y. Wu and J. Guo, "Preparation of ultrafiltration membrane by polyethylene glycol non-covalent functionalized multi-walled carbon nanotubes: Application for HA removal and fouling control", Membranes, 11, 362 (2021). 
  25. J. Xu, H. Yan, Y. Zhang, G. Pan, and Y. Liu, "The morphology of fully-aromatic polyamide separation layer and its relationship with separation performance of TFC membranes", J. Membr. Sci., 541, 174-188 (2017).  https://doi.org/10.1016/j.memsci.2017.06.057
  26. Y. Qin, S. Yu, Q. Zhao, G. Kang, H. Yu, Y. Jin, and Y. Cao, "New insights into tailoring polyamide structure for fabricating highly permeable reverse osmosis membranes", Desalination, 499, 114840 (2021). 
  27. S. Y. Kwak, S. G. Jung, Y. S. Yoon, and D. W. Ihm, "Details of surface features in aromatic polyamide reverse osmosis membranes characterized by scanning electron and atomic force microscopy", J. Polym. Sci. B. Polym. Phys., 37, 1429-1440 (1999).  https://doi.org/10.1002/(SICI)1099-0488(19990701)37:13<1429::AID-POLB9>3.0.CO;2-B
  28. A. K. Ghosh, B. H. Jeong, X. Huang, and E. M. V. Hoek, "Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties", J. Membr. Sci., 311, 34-45 (2008).  https://doi.org/10.1016/j.memsci.2007.11.038
  29. C. Y. Tang, Y. N. Kwon, and J. O. Leckie, "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II Membrane physiochemical properties and their dependence on polyamide and coating layers", Desalination, 242, 168-182 (2009).  https://doi.org/10.1016/j.desal.2008.04.004
  30. W. Z. Qiu, H. C. Yang, L. S. Wan, and Z. K. Xu, "Co-deposition of catechol/polyethyleneimine on porous membranes for efficient decolorization of dye water", J. Mater. Chem. A, 3, 14438-14444 (2015).  https://doi.org/10.1039/C5TA02590G
  31. L. Yi, B. Lin, W. Liu, J. Li, C. Gao, and Q. Pan, "Preparation and characterization of a novel nanofiltration membrane with chlorine-tolerant property and good separation performance", RSC adv, 8, 36430-36440 (2018).  https://doi.org/10.1039/C8RA06755D
  32. M. Elimelech, W. H. Chen, and J. J. Waypa, "Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer", Desalination, 95, 269-286 (1994).  https://doi.org/10.1016/0011-9164(94)00064-6
  33. S. L. Walker, S. Bhattacharjee, E. M. V. Hoek, and M. Elimelech, "A novel asymmetric clamping cell for measuring streaming potential of flat surfaces", Langmuir, 18, 6, 2193-2198 (2002).  https://doi.org/10.1021/la011284j
  34. E. M. Vrijenheok, S. K. Hong, and M. Elimelech, "Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes", J. Membr. Sci., 188, 115-128 (2001).  https://doi.org/10.1016/S0376-7388(01)00376-3
  35. C. Liu, Y. Guo, Y. Zhou, B. Yang, K. Xiao, and H. Z. Zhao, "High-hydrophilic and antifouling reverse osmosis membrane prepared based an unconventional radiation method for pharmaceutical plant effluent treatment", Sep. Purif. Technol., 280, 119838 (2022). 
  36. B. Baghernejad, "Application of p-toluenesulfonic Acid (PTSA) in Organic Synthesis", Curr. Org. Chem., 15, 3091-3097 (2011).  https://doi.org/10.2174/138527211798357074
  37. H. Dong, L. Zhao, L. Zhang, H. Chen, C. Gao, and W. S. Winston Ho, "High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination", J. Membr. Sci., 476, 373-383 (2015).  https://doi.org/10.1016/j.memsci.2014.11.054
  38. D.H.N. Perera, Q. Song, H. Qiblawey and E. Sivaniah, "Regulating the aqueous phase monomer balance for flux improvement in polyamide thin film composite membranes", J. Membr. Sci., 487, 74-82 (2015).  https://doi.org/10.1016/j.memsci.2015.03.038
  39. H. J. Kim, K. Y. Choi, Y. B. Baek, D. G. Kim, J. M. Shim, J. Y. Yoon and J. C. Lee, "High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions", ACS Appl. Mater. Interfaces, 6, 2819-2829 (2014).  https://doi.org/10.1021/am405398f
  40. H. J. Kim, M. Y. Lim, K. H. Jung, D. G. Kim and J. C. Lee, "High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides", J. Mater. Chem. A, 3, 6798-6809 (2015).  https://doi.org/10.1039/C4TA06080F
  41. Z. Zhang, Y. Qin, G. Kang, H. Yu, Y. Jin and Y. Cao, "Tailoring the internal void structure of polyamide films to achieve highly permeable reverse osmosis membranes for water desalination", J. Membr. Sci., 595, 117518 (2020). 
  42. J. Yin, G. Zhu and B. Deng, "Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification", Desalination, 379, 93-101 (2016).  https://doi.org/10.1016/j.desal.2015.11.001
  43. J. Duan, Y. Pan, F. Pacheco, E. Litwiller, Z. Lai and I. Pinnau, "High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8", J. Membr. Sci., 476, 303-310 (2015). https://doi.org/10.1016/j.memsci.2014.11.038