DOI QR코드

DOI QR Code

상전이-압출 알루미나 분리막 제조 공정에서 혼합 고분자 바인더 적용에 따른 성능 및 특성 평가

Performance and Characterization of Ceramic Membrane by Phase Inversion-Extrusion Process with Polymer Binder Mixing

  • 민소진 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 박아름이 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 권용성 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 김대훈 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 박유인 (한국화학연구원 LCP융합연구단) ;
  • 김성중 (한국세라믹기술원 바이오융합소재연구단 바이오헬스소재센터) ;
  • 남승은 (한국화학연구원 화학공정연구본부 그린탄소연구센터)
  • Sojin Min (Green Carbon Research Center, Chemical & Process Technology Division, Korea Institute of Chemical Technology) ;
  • Ahrumi Park (Green Carbon Research Center, Chemical & Process Technology Division, Korea Institute of Chemical Technology) ;
  • Yongsung Kwon (Green Carbon Research Center, Chemical & Process Technology Division, Korea Institute of Chemical Technology) ;
  • Daehun Kim (Green Carbon Research Center, Chemical & Process Technology Division, Korea Institute of Chemical Technology) ;
  • You-In Park (Center for Low-Carbon Chemical Process, Korea Institute of Chemical Technology) ;
  • Seong-Joong Kim (Korea Institute of Ceramic Engineering and Technology) ;
  • Seung-Eun Nam (Green Carbon Research Center, Chemical & Process Technology Division, Korea Institute of Chemical Technology)
  • 투고 : 2023.12.05
  • 심사 : 2023.12.19
  • 발행 : 2023.12.31

초록

세라믹 분리막은 높은 열적, 화학적 안정성을 갖기 때문에 극한의 조건에서 운전되는 다양한 산업 공정에 적용할 수 있다. 그러나 투과도와 기계적 강도의 trade-off 현상에 의한 세라믹 분리막 활용에 제약이 있어, 고투과성-고강도 분리막의 개발이 필요하다. 본 연구에서는 상전이-압출법으로 알루미나 중공사 분리막을 제조하고, 고분자 바인더의 종류와 그 혼합비에 따른 분리막의 특성 변화를 관찰하였다. 용매인 DMAc (Dimethylacetamide)와 고분자 바인더의 한센 용해도 인자를 비교하면, PSf (polysulfone)가 DMAc와 높은 용해도 특성을 갖기 때문에 도프 용액의 점도와 토출압력이 높게 나타나 분리막 내부가 치밀한 구조로 형성되기 때문에 높은 기계적 강도를 갖으나 수투과도가 감소하는 것으로 확인되었다. 그에 반해, PES(polyethersulfone)를 이용하여 분리막을 제조하면 기계적 강도가 다소 감소하고 수투과도가 증가하는 것으로 나타났다. 따라서 분리막 성능과 물성을 최적화하기 위해 PSf와 PES를 혼합하여 분리막을 제조하였으며, 9:1로 혼합하여 제조된 분리막에서 최적화된 수투과도와 기계적 강도를 얻을 수 있었다.

Ceramic membranes are generally used for various industrial processes operating under extreme conditions because of its high thermal and chemical stability. However, due to the trade-off phenomenon of permeability and mechanical strength, preparation of high permeability-high strength membrane is necessary. In this study, the change in characteristics and performances of ceramic membranes was analyzed depending on the type of polymer binder and its mixing ratio. Because the solubility between solvent and polymer binder was higher in PSf (polysulfone) than in PES (polyethersulfone), the viscosity and discharge pressure of the PSf-based dope solution were higher than those of PES-based dope solution. When PSf was used as a polymer binder, ceramic membrane showed high mechanical strength and low water permeability due to the dense structure. On the other hand, in case of PES, the mechanical strength was slightly reduced and the water permeability was increased. It was confirmed that the optimum mixing ratio of the PSf and PES with high water permeability and mechanical strength was 9:1.

키워드

과제정보

이 논문은 2023년 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회 융합연구단사업(No. CRC22042-300)의 지원을 받아 수행된 연구임.

참고문헌

  1. Y. Wang, B. Ma, M. Ulbricht, Y. Dong, and X. Zhao, "Progress in alumina ceramic membranes for water purification: Status and prospects", Water Res., 226, 119173 (2022).
  2. M. B. Asif and Z. Zhang, "Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects", Chem. Eng. J., 418, 129481 (2021).
  3. H. J. Lee, M. K. Kim, J. H. Park, and E. Magnone, "Temperature and pressure dependence of the CO2 absorption through a ceramic hollow fiber membrane contactor module", Chem. Eng. Process, 150, 107871 (2020).
  4. K. M. Majewska-Nowak, "Application of ceramic membranes for the separation of dye particles", Desalination, 254, 185-191 (2010). https://doi.org/10.1016/j.desal.2009.11.026
  5. S. G. Lehman and L. Liu, "Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent", Water Res., 43, 2020-2028 (2009). https://doi.org/10.1016/j.watres.2009.02.003
  6. T. Tsuru, "Inorganic porous membranes for liquid phase separation", Sep. Purif. Methods, 30, 191- 220 (2001). https://doi.org/10.1081/SPM-100108159
  7. P. de Wit, F. S. van Daalen, and N. E. Benes, "The mechanical strength of a ceramic porous hollow fiber", J. Membr. Sci., 524, 721-728 (2017). https://doi.org/10.1016/j.memsci.2016.11.047
  8. S. K. Amin, M. H. Roushdy, and C. A. El-Sherbiny, "An overview of production and development of ceramic membranes", Engineering at BUE Scholar, 11, 7708-7721 (2016).
  9. J. Mo, X. Li, and Z. Yang, "Elucidating the role of interlayer structure in the permeance-selectivity trade-off of ceramic nanofiltration membrane", Sep. Purif. Technol., 319, 124056 (2023).
  10. Q. Gu, M. Kotobuki, C. H. Kirk, M. He, G. J. Lim, T. C. A. Ng, L. Zhang, H. Y. Ng, and J. Wang, "Overcoming the trade-off between water permeation and mechanical strength of ceramic membrane supports by interfacial engineering", ACS Appl. Mater. Interfaces, 13, 29199-29211 (2021). https://doi.org/10.1021/acsami.1c08157
  11. H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, "Maximizing the right stuff: The trade-off between membrane permeability and selectivity", Science, 356, eaab0530 (2017).
  12. W. Zhu, Y. Liu, K. Guan, C. Peng, and J. Wu, "Design and optimization of ceramic membrane structure: from the perspective of flux matching between support and membrane", Ceram. Int., 47, 12357-12365 (2021). https://doi.org/10.1016/j.ceramint.2021.01.088
  13. B. Van der Bruggen, C. Vandecasteele, T. Van Gestel, W. Doyen, and R. Leysen, "A review of pressure-driven membrane processes in wastewater treatment and drinking water production", Environ. Prog. Sustain. Energy, 22, 46-56 (2003).
  14. T. Kuzniatsova, M. Mottern, K. Shqau, D. Yu, and H. Verweij, "Micro-structural optimization of supported γ-alumina membranes", J. Membr. Sci., 316, 80-88 (2008). https://doi.org/10.1016/j.memsci.2007.11.047
  15. M. Nomura, K. Ono, S. Gopalakrishnan, T. Sugawara, and S.-I. Nakao, "Preparation of a stable silica membrane by a counter diffusion chemical vapor deposition method", J. Membr. Sci., 251, 151-158 (2005). https://doi.org/10.1016/j.memsci.2004.11.008
  16. H. Qi, G. Zhu, L. Li, and N. Xu, "Fabrication of a sol-gel derived microporous zirconia membrane for nanofiltration", J. Solgel Sci. Technol., 62, 208-216 (2012). https://doi.org/10.1007/s10971-012-2711-0
  17. J. Sekulic, J. E. ten Elshof, and D. A. Blank, "A microporous titania membrane for nanofiltration and pervaporation", Adv. Mater., 16, 1546-1550 (2004). https://doi.org/10.1002/adma.200306472
  18. D. Liang, J. Huang, H. Zhang, H. Fu, Y. Zhang, and H. Chen, "Influencing factors on the performance of tubular ceramic membrane supports prepared by extrusion", Ceram. Int., 47, 10464-10477 (2021). https://doi.org/10.1016/j.ceramint.2020.12.235
  19. Y.-B. Kim, M.-Z. Kim, D. Arepalli, and C.-H. Cho, "Improvement in mechanical strength of α-alumina hollow fiber membrane by introducing nanosize γ-alumina particle as sintering agent", Membr. J., 32, 150-162 (2022). https://doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.2.150
  20. P. Monash, G. Pugazhenthi, and P. Saravanan, "Various fabrication methods of porous ceramic supports for membrane applications", Rev. Chem. Eng., 29, 357-383 (2013).
  21. P. Fan, K. Zhen, Z. Zan, Z. Chao, Z. Jian, and J. Yun, "Preparation and development of porous ceramic membrane supports fabricated by extrusion technique", Chem. Eng. Trans., 55, 277-282 (2016).
  22. M.-M. Lorente-Ayza, S. Mestre, M. Menendez, and E. Sanchez, "Comparison of extruded and pressed low cost ceramic supports for microfiltration membranes", J. Eur. Ceram. Soc., 35, 3681-3691 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.06.010
  23. K. P. Goswami and G. Pugazhenthi, "Effect of binder concentration on properties of low-cost fly ash-based tubular ceramic membrane and its application in separation of glycerol from biodiesel", J. Clean. Prod., 319, 128679 (2021).
  24. K. Hemra, D. Atong, and P. Aungkavattana, "Preparation of micro-porous alumina sheet support for ceramic membrane by extrusion", J. Solid Mech. Mater. Eng., 1, 547-555 (2007).
  25. Q. Liu, Y. F. Hu, and Q. L. Wang, "Researches on fractal features of graphite porous materials", Adv Mat Res, 507, 25-29 (2012).
  26. M. Brugnara, E. Degasperi, C. Della Volpe, D. Maniglio, A. Penati, and S. Siboni, "Wettability of porous materials, II: Can we obtain the contact angle from the Washburn equation", Contact Angle, Wettability and Adhesion, 4, 143-164 (2006).
  27. K. Baruah, S. Hazarika, S. Borthakur, and N. N. Dutta, "Preparation and characterization of polysulfone-cyclodextrin composite nanofiltration membrane: Solvent effect", J. Appl. Polym. Sci., 125, 3888-3898 (2012). https://doi.org/10.1002/app.36711
  28. Y.-M. Wei, Z.-L. Xu, X.-T. Yang, and H.-L. Liu, "Mathematical calculation of binodal curves of a polymer/solvent/nonsolvent system in the phase inversion process", Desalination, 192, 91-104 (2006).  https://doi.org/10.1016/j.desal.2005.07.035