DOI QR코드

DOI QR Code

Comparison of the Effects of Pharmacopuncture Extracts with Hominis placenta Pharmacopuncture and Wild Ginseng Pharmacopuncture on the Differentiation of C2C12 Myoblasts into Myotubes through Regulation of the AMPK/SIRT1 Signaling Pathway

자하거약침액과 산삼약침액의 C2C12 근아세포에서의 AMPK/SIRT1 신호전달을 통한 근 분화 유도 및 에너지 대사 증진 효과 비교

  • Ji Hye Hwang (Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University) ;
  • Hyo Won Jung (Department of Herbology, College of Korean Medicine, Dongguk University)
  • 황지혜 (가천대학교 한의과대학 침구의학과) ;
  • 정효원 (동국대학교 한의과대학 본초학교실)
  • Received : 2023.08.21
  • Accepted : 2023.09.19
  • Published : 2023.12.31

Abstract

Objectives: This study was conducted to compare the effects of Hominis placenta (Jahage, J) and wild ginseng (SanSam, S) pharmacopuncture drugs on muscle differentiation and energy metabolism regulation in C2C12 myotubes. Methods: The C2C12 myoblasts were differentiated into myotubes for 5 days by replacing in medium containing 2% horse serum and then treated with J and S pharmacopuncture extract at different concentrations for 24 hr. The expression of myosin heavy chain and energy metabolism-regulating factors, myosin heavy chain (MHC), nuclear respiratory factor-1 (NRF-1), and proliferator-activated receptor γ coactivator-1 alpha (PGC-1α) were determined in C2C12 myotubes by western blot. Additionally, the phosphorylation of AMPK and the expression of mitochondrial biogenesis, including sirtuin 1 (SIRT1) were determined in the myotubes. Results: As a result, treatment with J and S pharmacopuncture extract at 0.1 and 1 mg/mL increased the MHC expression in C2C12 myotubes compared with non-treated cells, but only S pharmacopuncture was shown a significant and distinct increase in the expression. Expression of TFAM and NRF-1 was also shown significant increases in S and J pharmacopuncture in C2C12 myotubes compared to non-treated cells. The phosphorylation of AMPK and the expression of PGC-1α and SIRT1 showed increased expression in S and J pharmacopuncture compared to non-treated cells. The effect of low-dose of J pharmacopuncture on the phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and PGC-1α expression was greater than that of S pharmacopuncture. Conclusions: In conclusion, both J and S pharmacopuncture promote muscle differentiation in C2C12 myoblasts into myotubes and energy metabolism through the AMPK/SIRT1 signaling pathway. This indicates that the pharmacopuncture with tonic herbal medicines can help to improve skeletal muscle function.

Keywords

Acknowledgement

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2022R1A2C1013518).

References

  1. Pereira AF, Silva AJ, Matos Costa A, Monteiro AM, Bastos EM, Cardoso Marques M. Muscle tissue changes with aging. Acta Med Port. 2013 ; 26(1) : 51-5. 
  2. Kim M, Kim H, Park S, Cho I, Yu W. A study on the analysis of physical function in adults with sarcopenia. J Korean Soc Integr Med. 2020 ; 8(2) : 199-209. 
  3. Guo CY, Ma YJ, Liu ST, Zhu RR, Xu XT, Li ZR, et al. Traditional Chinese medicine and sarcopenia: a systematic review. Front Aging Neurosci. 2022 ; 14 : 872233. 
  4. Hwang JH, Kang SY, Jung HW. Effects of American wild ginseng and Korean cultivated wild ginseng pharmacopuncture extracts on the regulation of C2C12 myoblasts differentiation through AMPK and PI3K/Akt/mTOR signaling pathway. Mol Med Rep. 2022 ; 25(6) : 192. 
  5. Sin MK. Clinical traditional herbalogy. Younglimsa. 2002 : 191-2. 
  6. Lee JH, Yang TJ, Kim SW, Jeong JY, Ma YH, Oh JS, et al. Efficacy between Hwangryunhaedoktang pharmacopuncture therapy and Hominis placenta pharmacopuncture therapy on peripheral facial paralysis: retrospective comparision study. Korean J Acupunct 2015 ; 32(4) : 199-207.  https://doi.org/10.14406/acu.2015.023
  7. Nam SC. Immune pharmacopuncturology. Meridian Medicine Publishing Company. 2009 : 1-475. 
  8. Lee IS, Kang KS, Kim SY. Panax ginseng pharm acopuncture: current status of the research and future challenges. Biomolecules. 2019 ; 10(1) : 33. 
  9. Jeong JH, Ku J, Hwang JH. A study on the significance of acupuncture and pharmacopuncture therapy for cold accumulation through a literature review on the historical development process in cold accumulation treatment. J Acupunct Res. 2022 ; 39(4) : 267-74.  https://doi.org/10.13045/jar.2022.00178
  10. Choi SJ, Kim DI. The review on trend of clinical studies of Hominis placenta pharmacopuncture on obstetrics & gynecology diseases. J Korean Obstet Gynecol. 2019 ; 32(1) : 15-25. 
  11. De D, Datta Chakraborty P, Mitra J, Sharma K, Mandal S, Das A, et al. Ubiquitin-like protein from human placental extract exhibits collagenase activity. PLoS One. 2013 ; 8(3) : e59585. 
  12. De D, Chakraborty PD, Bhattacharyya D. Regulation of trypsin activity by peptide fraction of an aqueous extract of human placenta used as wound healer. J Cell Physiol. 2011 ; 226(8) : 2033-40.  https://doi.org/10.1002/jcp.22535
  13. Choi SJ, Kim DI, Yoon SH, Choi CM, Yoo JE. Randomized, single-blind, placebo-controlled trial on Hominis placenta extract pharmacopuncture for hot flashes in peri-and post-menopausal women. Integr Med Res. 2022 ; 11(4) : 100891. 
  14. Hwang JH, Cho HS, Lee HJ, Lee DG, Jeong WJ, Jung CY, et al. Effect of inhibition macrophage migration inhibitory factor activation by Hominis placenta herbal acupuncture on rheumatic arthritis. J Acupunct Res. 2008 ; 25(3) : 41-51. 
  15. Kim JW, Kim CY, Choi SP, Han SW, Lee JC, Kim DH. The case report of trigger finger improved with Hominis placenta pharmacopuncture treatment. J Pharmacopunct. 2010 ; 13(4) : 139-47.  https://doi.org/10.3831/KPI.2010.13.4.139
  16. Lee DE, Park WH, Cha YY. The case report of chronic ankle sprain improved with Hominis placenta pharmacopuncture treatment. J Korean Med Rehabil. 2016 ; 26(3) : 171-81.  https://doi.org/10.18325/jkmr.2016.26.3.171
  17. Zha W, Sun Y, Gong W, Li L, Kim W, Li H. Ginseng and ginsenosides: therapeutic potential for sarcopenia. Biomed Pharmacother. 2022 ; 156 : 113876. 
  18. Korean pharmacopuncture institute. Outline of herbal acupuncture therapy. Korean Pharmacopuncture Institute. 1999 : 318-23. 
  19. Shin H, Lee JH, Kang HW. A systematic review of placenta pharmacopuncture for neuropsychiatric diseases in practice. J Orient Neuropsychiatry. 2022 ; 33(2) : 157-80. 
  20. Carotti D, Allegra E. An approach to chemical character-ization of human placental extracts: proteins, peptides, and amino acids analyses. Physiol Chem Phys. 1981 ; 13(2) : 129-36. 
  21. Noh JH, Park JA, Youn HM, Jang KJ, Song CH, Ahn CB, et al. The effect of Hominis placenta pharmacopuncture on leg spasticity of stroke patients (a pilot study, double blind, randomized, controlled clinical trial). J Pharm acopunct. 2009 ; 12(4) : 97-110.  https://doi.org/10.3831/KPI.2009.12.4.097
  22. Song GC, Seo JY, Cho MU, Song SB, Choi BS, Ryu WH, et al. Case report of patients diagnosed with spinal stenosis treated by Hominis placenta megadose pharmacopuncture combined with Korean medicine treatment. J Physiol Pathol Korean Med. 2018 ; 32(2) : 141-7.  https://doi.org/10.15188/kjopp.2018.04.32.2.141
  23. Baek SH, Lee IH, Kim MJ, Kim EJ, Ha IH, Lee JH, et al. Component analysis and toxicity study of combined cultivated wild ginseng pharmacopuncture. J Int Korean Med. 2015 ; 36(2) : 189-99. 
  24. Lin CH, Lin YA, Chen SL, Hsu MC, Hsu CC. American ginseng attenuates eccentric exercise-induced muscle damage via the modulation of lipid peroxidation and inflammatory adaptation in males. Nutrients. 2021 ; 14(1) : 78. 
  25. Jung HC, Lee NH, Kim YC, Lee S. The effects of wild ginseng extract on psychomotor and neuromuscular performance recovery following acute eccentric exercise: a preliminary study. Appl Sci. 2010 ; 10(17) : 5839. 
  26. Seok YM, Yoo JM, Nam Y, Kim J, Kim JS, Son JH, et al. Mountain ginseng inhibits skeletal muscle atrophy by decreasing muscle RING finger protein-1 and atrogin1 through forkhead box O3 in L6 myotubes. J Ethnopharmacol. 2021 ; 270 : 113557. 
  27. Favero G, Rodella LF, Nardo L, Giugno L, Cocchi MA, Borsani E, et al. A comparison of melatonin and α-lipoic acid in the induction of antioxidant defences in L6 rat skeletal muscle cells. Age (Dordr). 2015 ; 37(4) : 9824. 
  28. Mankhong S, Kim S, Moon S, Kwak HB, Park DH, Kang JH. Experimental models of sarcopenia: bridging molecular mechanism and therapeutic strategy. Cells. 2020 ; 9(6) : 1385. 
  29. Bentzinger CF, Wang YX, Rudnicki MA. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol. 2012 ; 4(2) : a008342. 
  30. Ferri P, Barbieri E, Burattini S, Guescini M, D'Emilio A, Biagiotti L, et al. Expression and subcellular localization of myogenic regulatory factors during the differentiation of skeletal muscle C2C12 myoblasts. J Cell Biochem. 2009 ; 108(6) : 1302-17.  https://doi.org/10.1002/jcb.22360
  31. Kim BS. The effects of endurance exercise and selenium treatment on mitochondrial transcription factors expression in old GK rats. Dev Reprod. 2010 ; 14(2) : 75-82. 
  32. Cho S, Kang J, Park S, Lee Y, Kim H, Lee H, inventor; Samsung Electronics Co., Ltd., Sungkyunkwan University Research & Business Foundation, assignee. Composition comprising indoprofen and use thereof. KR20170039452A. 2015 Oct 1. 
  33. Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol. 2005 ; 25(4) : 1354-66.  https://doi.org/10.1128/MCB.25.4.1354-1366.2005
  34. Wagatsuma A, Sakuma K. Mitochondria as a potential regulator of myogenesis. ScientificWorldJournal. 2013 ; 2013 : 593267. 
  35. Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 2009 ; 20(2) : 98-105.  https://doi.org/10.1097/MOL.0b013e328328d0a4
  36. Lee DH. Sirt1 as a new therapeutic target in metabolic and age-related diseases. Chonnam Med J. 2010 ; 46(2) : 67-73.  https://doi.org/10.4068/cmj.2010.46.2.67
  37. Fulco M, Sartorelli V. Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues. Cell Cycle. 2008 ; 7(23) : 3669-79.  https://doi.org/10.4161/cc.7.23.7164
  38. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009 ; 458(7241) : 1056-60.  https://doi.org/10.1038/nature07813