DOI QR코드

DOI QR Code

Crude Extract and Solvent-Partitioned Fractions of the Halophyte Atriplex gmelinii Inhibit Adipogenesis in 3T3-L1 Preadipocytes

3T3-L1 지방전구세포에서 염생식물 Atriplex gmelinii의 조추출물과 용매 분획물의 지방세포분화 억제

  • Jung Im Lee (Incheon Regional Office, National Fishery Products Quality Management Service) ;
  • Jung Hwan Oh (Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University) ;
  • Chang-Suk Kong (Department of Food and Nutrition, Silla University) ;
  • Youngwan Seo (Division of Convergence on Marine Science, Korea Maritime and Ocean University)
  • 이정임 (국립수산물품질관리원 인천지원) ;
  • 오정환 (신라대학교 해양식의약소재융합기술연구소) ;
  • 공창숙 (신라대학교 식품영양학과) ;
  • 서영완 (한국해양대학교 해양과학융합학부)
  • Received : 2023.10.19
  • Accepted : 2023.11.29
  • Published : 2023.12.31

Abstract

Objectives: Atriplex gmelinii C. A. Meyer is a halophyte belonging to the Chenopodiaceae family, and its young leaves and stems are used as fodder for livestock. The aim of the present study was to investigate the effects of A. gmelinii extract and its solvent fractions on lipid accumulation during adipogenesis of 3T3-L1 preadipocytes. Methods: The samples of A. gmelinii were separately extracted using methylene chloride and methanol. Subsequently, they were combined to formulate the initial extract, which was then partitioned based on polarity to prepare solvent fractions. Oil Red O staining was employed to measure lipid accumulation during the differentiation of 3T3-L1 preadipocytes. To verify cytotoxicity in 3T3-L1 cells, MTT assays were conducted. The expression levels of transcription factors in 3T3-L1 preadipocytes were measured through Western blotting analysis. Results: At 50 ㎍/mL, treatment of A. gmelinii extract and its solvent fractions during the differentiation of 3T3-L1 preadipocytes significantly diminished lipid accumulation with no noteworthy cytotoxicity on cell viability. Additionally, when investigating the biochemical pathways that underlie the prevention of lipid accumulation using solvent fractions, it was found that the n-BuOH and n-hexane fractions significantly decreased the expression of key transcription factors involved in the generation of fat, such as peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), and sterol regulatory element-binding protein-1c (SREBP1c). Conclusions: These findings indicate that A. gmelinii can effectively reduce the accumulation of fat in 3T3-L1 adipocytes, making it a potentially valuable material for mitigating and preventing obesity.

Keywords

Acknowledgement

본 연구는 해양수산부 재원으로 해양수산과학기술진흥원 해양바이오전략소재개발 및 상용화지원사업(No. 20190096)과 과학기술정보통신부의 재원으로 한국연구재단의 기본 연구사업(No. 2022R1F1A1065328)의 지원을 받아 수행된 연구결과입니다.

References

  1. Park HK. A mechanism how obesity to attain a status of disease. J Sci Technol Stud. 2014 ; 14(2) : 165-98.
  2. Park YW. Clinical guidelines of treatment of obesity in adults. J Korean Med Assoc. 2003 ; 46(4) : 345-56. https://doi.org/10.5124/jkma.2003.46.4.345
  3. Wu TR, Lin CS, Chang CJ, Lin TL, Martel J, Ko YF, et al. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut. 2019 ; 68(2) : 248-62. https://doi.org/10.1136/gutjnl-2017-315458
  4. Choi SJ, Park SM, Kwak YS. Comparison of the thigh composition and its functional contractility in obese and nonobese elderly patients. J Life Sci. 2014 ; 24(10) : 1125-31. https://doi.org/10.5352/JLS.2014.24.10.1125
  5. Han G. Evaluation of chronic disease and nutritional intake by obesity of Korean elderly-data from Korea National Health and Nutrition Examination Survey 2016-2018. Korean J Food Nutr. 2020 ; 33(4) : 428-39.
  6. Muller TD, Bluher M, Tschop MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov. 2022 ; 21(3) : 201-23. https://doi.org/10.1038/s41573-021-00337-8
  7. Chakhtoura M, Haber R, Ghezzawi M, Rhayem C, Tcheroyan R, Mantzoros CS. Pharmacotherapy of obesity: an update on the available medications and drugs under investigation. EClinicalMedicine. 2023 ; 58 : 101882.
  8. Saxena AR, Frias JP, Brown LS, Gorman DN, Vasas S, Tsamandouras N, et a l. Efficacy and safety o f oral small molecule glucagon-like peptide 1 receptor agonist danuglipron for glycemic control among patients with type 2 diabetes: a randomized clinical trial. JAMA Netw Open. 2023 ; 6(5) : e2314493.
  9. Conforti F, Pan MH. Natural products in anti-obesity therapy. Molecules. 2016 ; 21(12) : 1750.
  10. Li SZ, Zeng SL, Liu EH. Anti-obesity natural products and gut microbiota. Food Res Int. 2022 ; 151 : 110819.
  11. Shaik Mohamed Sayed UF, Moshawih S, Goh HP, Kifli N, Gupta G, Singh SK, et al. Natural products as novel anti-obesity agents: insights into mechanisms of action and potential for therapeutic management. Front Pharmacol. 2023 ; 14 : 1182937.
  12. Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, et al. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol. 2009 ; 47(8) : 2083-91. https://doi.org/10.1016/j.fct.2009.05.040
  13. Ksouri R, Megdiche W, Falleh H, Trabelsi N, Boulaaba M, Smaoui A, et al. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. Comptes Rendus Biol. 2008 ; 331(11) : 865-73. https://doi.org/10.1016/j.crvi.2008.07.024
  14. Ben Hamed K, Castagna A, Salem E, Ranieri A, Abdelly C. Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regul. 2007 ; 53 : 185-94. https://doi.org/10.1007/s10725-007-9217-8
  15. Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK. Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet. 2006 ; 85(3) : 237-54. https://doi.org/10.1007/BF02935340
  16. Ali B, Musaddiq S, Iqbal S, Rehman T, Shafiq N, Hussain A. The therapeutic properties, ethnopharmacology and phytochemistry of Atriplex species: a review. Pakistan J Biochem Biotechnol. 2021 ; 2(1) : 49-64. https://doi.org/10.52700/pjbb.v2i1.38
  17. Jeong H, Kim H, Ju E, Kong CS, Seo Y. Antioxidant effect of the halophyte Atriplex gmelinii. KSBB J. 2016 ; 31(4) : 200-7. https://doi.org/10.7841/ksbbj.2016.31.4.200
  18. Park MJ, Kim J, Kong CS, Seo Y. Inhibition of MMP-2 and -9 by crude extracts and their solvent-partitioned fractions from the halophyte Atriplex gmelinii. Ocean Polar Res. 2019 ; 41(2) : 79-88.
  19. Jeon GY, Kim YC. Anti-wrinkle and skin-whitening efficacies of Atriplex gmelinii methanol extract in a cellfree system. J Invest Cosmetol. 2022 ; 18(2) : 161-8.
  20. Kong CS, Lee JI, Kwon MS, Seo Y. Inhibitory effect of crude extracts from a brown alga Sargassum siliquanstrum on 3T3-L1 adipocyte differentiation. Ocean Polar Res. 2015 ; 37(4) : 279-85.
  21. Kim J, Kong CS, Moon KH, Seo Y. Inhibitory effects of the halophyte Ligustrum japonicum on matrix metalloproteinases activity in PMA-stimulated HT-1080 cells. KSBB J. 2020 ; 35(1) : 57-63. https://doi.org/10.7841/ksbbj.2020.35.1.57
  22. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011 ; 121(6) : 2094-101. https://doi.org/10.1172/JCI45887
  23. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. J Am Coll Cardiol. 2009 ; 53(21) : 1925-32. https://doi.org/10.1016/j.jacc.2008.12.068
  24. Park E, Song JH, Kim GN, Kim HO. Anti-oxidant and anti-obese effects of mulberry (Morus alba L.) leaf extract in 3T3-L1 cells. Kor J Aesthet Cosmetol. 2015 ; 13(1) : 19-26.
  25. Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006 ; 4(4) : 263-73. https://doi.org/10.1016/j.cmet.2006.07.001
  26. Lowe CE, O'Rahilly S, Rochford JJ. Adipogenesis at a glance. J Cell Sci. 2011 ; 124(Pt 16) : 2681-6. https://doi.org/10.1242/jcs.079699
  27. Hamm JK, Park BH, Farmer SR. A role for C/EBPbeta in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-L1 preadipocytes. J Biol Chem. 2001 ; 276(21) : 18464-71. https://doi.org/10.1074/jbc.M100797200
  28. Lee M, Sorn SR, Lee Y, Kang I. Salt induces adipogenesis/lipogenesis and inflammatory adipocytokines secretion in adipocytes. Int J Mol Sci. 2019 ; 20(1) : 160.
  29. Cui H, Yang S, Zheng M, Liu R, Zhao G, Wen J. High-salt intake negatively regulates fat deposition in mouse. Sci Rep. 2017 ; 7(1) : 2053.
  30. Isa Y, Miyakawa Y, Yanagisawa M, Goto T, Kang MS, Kawada T, et al. 6-Shogaol and 6-gingerol, the pungent of ginger, inhibit TNF-alpha mediated downregulation of adiponectin expression via different mechanisms in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2008 ; 373(3) : 429-34. https://doi.org/10.1016/j.bbrc.2008.06.046
  31. Regassa A, Kim WK. Effects of oleic acid and chicken serum on the expression of adipogenic transcription factors and adipogenic differentiation in hen preadipocytes. Cell Biol Int. 2013 ; 37(9) : 961-71. https://doi.org/10.1002/cbin.10122
  32. Kim YA, Kong CS, Lee JI, Kim H, Park HY, L ee HS, et al. Evaluation of novel antioxidant triterpenoid saponins from the halophyte Salicornia herbacea. Bioorg Med Chem Lett. 2012 ; 22(13) : 4318-22. https://doi.org/10.1016/j.bmcl.2012.05.017
  33. Lee HS. Meta-analysis on the effect of obesity and blood lipid levels in Salicornia herbacea. J Korean Appl Sci Technol. 2023 ; 40(1) : 123-34.