DOI QR코드

DOI QR Code

Bioconversion of nutrient and phytoestrogen constituents during the solid-state fermentation of soybeans by mycelia of Tricholoma matsutake

송이버섯 균사체를 이용한 대두 고체발효 중 영양성분과 식물성 에스트로겐 성분의 생물전환

  • Hee Yul Lee (Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University) ;
  • Kye Man Cho (Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University) ;
  • Ok Soo Joo (Department of Food Science, Gyeongsang National University)
  • 이희율 (경상국립대학교 생명자원과학과 및 농식품바이오융복합연구원) ;
  • 조계만 (경상국립대학교 생명자원과학과 및 농식품바이오융복합연구원) ;
  • 주옥수 (경상국립대학교 식품공학부)
  • Received : 2023.08.11
  • Accepted : 2023.10.16
  • Published : 2023.12.30

Abstract

The findings of this study confirmed the alteration of β-glucosidase activity, nutritional constituents, isoflavones, antioxidant activities, and digestive enzyme inhibition activities in soybeans during solid-state fermentation times with mycelia of Tricholoma matsutake. After nine days, the highest activity level was observed for β-glucosidase (3.90 to 38.89 unit/g) and aglycones (163.03 to 1,074.28 ㎍/g). The sum of isoflavones showed a significant decrease (3,489.41 to 1,325.66 ㎍/g) along with glycosides (2,753.87 to 212.43 ㎍/g) for fermentation, while fatty acids showed a slight increase and amino acids showed a marked increase. Total phenolic and flavonoid contents showed a corresponding increase according to fermentation times (5.58 to 15.09 GAE mg/g; 0.36 to 1.58 RE mg/g). Antioxidant and enzyme inhibition activities also increased; in particular, the highest level of scavenging activities was observed for ABTS (up 60.13 to 82.08%), followed by DPPH (up 63.92% to 71.98%) and hydroxyl (up 36.01 to 52.02%) radicals. Of particular interest, α-glucosidase (6.69 to 83.49%) and pancreatic lipase inhibition (1.22 to 77.43%) showed a marked increase. These results demonstrated that fermentation of soybeans with the mycelia of T. matsutake enhanced the nutritional and functional constituents, and the biological activities of soybeans. Thus, this fermentation technology can be used to produce a novel functional materials from soybeans.

본 연구에서는 송이버섯 균사체를 이용한 대두의 고체 발효 기간 중 β-glucosidase 활성, 유리아미노산, 지방산, 이소플라본 함량 및 항산화 활성과 소화효소 저해 활성 변화에 대해서 확인하였다. 발효 기간 중 β-glucosidase 활성은 증가하여 발효 9일 38.89 unit/g으로 최대치를 보였으며, 이에 상응하여 aglycones 함량이 발효 9일 최대 함량을 보였다(0일: 163.03 ㎍/g → 9일: 1,074.28 ㎍/g). 특히 daidzein과 genistein 함량은 발효 9일 43.90배(511.49 mg/g)와 37.04배(460.86 mg/g) 증가를 보였다. 총지방산 함량과 총유리아미노산 함량은 발효 12일 130.85 mg/g 및 80.47 mg/g으로 가장 높았다. 특히 유리아미노산 중 필수아미노산인 발효 0일과 비교해 발효 12일 BCAA는 36.82배(0.34 → 12.52 mg/g) 증가하였으며, 감칠맛(aspartic acid 및 glutamic acid)과 단맛(serine, glycine, alanine, threonine, valine 및 lysine)과 관련된 성분의 합은 8.73 배(4.23 → 36.91 mg/g) 증가하였다. TP 및 TF 함량은 발효 기간에 따라 증가하여 발효 12일 2.7배(15.09 GAE mg/g) 및 4.4배(1.58 RE mg/g) 증가를 보였다. 항산화 활성 성분의 경향과 마찬가지로 DPPH, ABTS 및 hydroxyl 라디칼 소거 활성 또한 발효 12일 가장 높은 함량을 보였으며, ABTS(82.08%) > DPPH(71.98%) > hydroxyl(52.02%) 순으로 높게 확인되었다. α-Glucosidase 및 췌장 lipase 저해 활성은 폴리페놀 화합물에 영향으로 발효 12일 83.49%와 77.73%로 발효 기간 중 가장 높은 저해 활성을 나타내었다. 본 연구 결과, 9일에서 12일 발효 시 발효물의 영양 성분, 항산화 물질, 항산화 활성 및 소화효소 저해 활성이 우수하였으며, 송이버섯 균사체를 이용한 대두 발효물이 기능성 식품 또는 기능성 식품 원료로 활용성이 높을 것으로 판단된다.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant number 2021R1A6A3A01087286).

References

  1. Adebo OA, Medina-Meza IG. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules, 25, 927 (2020)
  2. Araujo MM, Fanaro GB, Villavicencio ALCH. Soybean and isoflavones - from farm to fork. Soybean: Bio-Act Compds, 2, 21 (2013)
  3. Basheer SM, Chellappan S, Beena PS, Sukumaran RK, Elyas KK, Chandrasekaran M. Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment. New Biotechnol, 28, 627-638 (2011) https://doi.org/10.1016/j.nbt.2011.04.007
  4. Buchholz T, Melzig MF. Polyphenolic compounds as pancreatic lipase inhibitors. Planta Med, 81, 771-783 (2015) https://doi.org/10.1055/s-0035-1546173
  5. Cao ZH, Green-Johnson JM, Buckleyc ND, Lin QY. Bioactivity of soy-based fermented foods: A review. Biotechnol Adu, 37, 223-238 (2019) https://doi.org/10.1016/j.biotechadv.2018.12.001
  6. Cho DH, Kim MJ, Sim EY, Jeon YH, Lee CK, Woo KS. Effect of carbohydrase treatments on phenolics content and antioxidant activity of maize flour. Korean J Food Sci Technol, 50, 132-137 (2018)
  7. Cho DY, Lee HY, Jeong JB, Lee JH, Lee GY, Jang MY, Lee JH, Lee JH, Haque MA, Cho KM. Comprehensive changes in nutrient constituents and antioxidant activity during food processing of isoflavone-enriched soybean leaf by mycelia of Tricholoma matsutake. Fermentation, 9, 677 (2023)
  8. Cho KM, Lee JH, Yun HD, Ahn BY, Kim H, Seo WT. Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. J Food Compost Anal, 24, 402-410 (2011) https://doi.org/10.1016/j.jfca.2010.12.015
  9. Choi SJ, Lee YS, Kim JK, Kim JK, Lim SS. Physiological activities of extract from edible mushrooms. J Korean Soc Food Sci Nutr, 39, 1087-1096 (2010) https://doi.org/10.3746/jkfn.2010.39.8.1087
  10. Chung YI, Bae IY, Lee JY, Chun HS, Lee HG. Protective effects of branched-chain amino acid (BCAA)-enriched corn gluten hydrolysates on ethanol-induced hepatic injury in rats. Korean J Food Sci Technol, 41, 706-711 (2009)
  11. Costa TM, Hermann KL, Garcia-Roman M, Valle RDCSC, Tavares LBB. Lipase production by Aspergillus niger grown in different agro-industrial wastes by solid-state fermentation. Brazil J Chem Eng, 34, 419-427 (2012)
  12. Gam DH, Hong JW, Yeom SH, Kim JW. Polyphenols in peanut shells and their antioxidant activity: Optimal extraction conditions and the evaluation of anti-obesity effects. J Nutr Health, 54, 116-128 (2021) https://doi.org/10.4163/jnh.2021.54.1.116
  13. Gan RY, Shah NP, Wang MF, Lui WY, Corke H. Fermentation alters antioxidant capacity and polyphenol distribution in selected edible legumes. Int J Food Sci Technol, 51, 875-884 (2016) https://doi.org/10.1111/ijfs.13062
  14. Goncalves R, Mateus N, De Freitas V. Study of the interaction of pancreatic lipase with procyanidins by optical and enzymatic methods. J Agric Food Chem, 58, 11901-11906 (2010) https://doi.org/10.1021/jf103026x
  15. Guo Q, Kong X, Hu C, Zhou B, Wang C, Shen QW. Fatty acid content, flavor compounds, and sensory quality of pork loin as affected by dietary supplementation with l-arginine and glutamic acid. J Food Sci, 84, 3445-3453 (2019) https://doi.org/10.1111/1750-3841.14959
  16. Ha TJ, Park JE, Kang BK, Kim HS, Shin SO, Seo JH, Oh EY, Kim SG, Kwak D. α-Glucosidase inhibitory activity of isoflavones and saponins from soybean (Glycine max L.) and comparisons of their constituents during heat treatments. J Korean Soc Food Sci Nutr, 48, 953-960 (2019) https://doi.org/10.3746/jkfn.2019.48.9.953
  17. Han HA. Physicochemical analysis of mushroom-mediated fermented soybeans and quality characteristics of soy paste and soy sauce made from fermented soybeans. Ph D Thesis, Jeonbuk University, Korea, p 40-41 (2022a)
  18. Han HA. Physicochemical analysis of mushroom-mediated fermented soybeans and quality characteristics of soy paste and soy sauce made from fermented soybeans. Ph D Thesis, Jeonbuk University, Korea, p 127-128 (2022b)
  19. Han HA. Physicochemical analysis of mushroom-mediated fermented soybeans and quality characteristics of soy paste and soy sauce made from fermented soybeans. Ph D Thesis, Jeonbuk University, Korea, p 134-135 (2022c)
  20. Hong JH, Jang ES, Gil MC, Lee GW, Cho YH. Anti-inflammatory effects of Rumohra adiantiformis extracts fermented with Bovista plumbea mycelium in LPS-stimulated RAW 264.7 Cells. J Life Sci, 33, 471-480 (2023)
  21. Hutson SM, Sweatt AJ, Lanoue KF. Branched-chain amino acid metabolism: Implications for establishing safe intakes. J Nutr, 135, 1557-1564 (2005)
  22. Hwang CE, Cho KM, Kim SC, Joo OS. Change in physicochemical properties, phytoestrogen content, and antioxidant activity during lactic acid fermentation of soy powder milk obtained from colored small soybean. Korean J Food Preserv, 25, 696-705 (2018) https://doi.org/10.11002/kjfp.2018.25.6.696
  23. Hwang CE, Kim SC, Lee JH, Lee DH, Cho KM. Comparison of primary and secondary metabolite compositions and antioxidant effects of specific soybean cultivars. Korean J Food Preserv, 26, 555-565 (2019) https://doi.org/10.11002/kjfp.2019.26.5.555
  24. Hwang TY, Lee JW, Sung JK, Kim HS. Variation of protein, oil and fatty acid contents of 172 Korean soybean [Glycine max (L.) Merrill] varieties. J Korean Soc Int Agric, 32, 54-61 (2020) https://doi.org/10.12719/KSIA.2020.32.1.54
  25. Joo OS, Hwang CE, Hong SY, Sin EC, Nam SH, Cho KM. Antioxidative and digestion enzyme inhibitory activity of Ganoderma lucidum depends on the extraction solvent. Korean J Food Preserv, 25, 124-135 (2018) https://doi.org/10.11002/kjfp.2018.25.1.124
  26. Jung BM, Roh SB. Physicochemical quality comparison of commercial doenjang and traditional green tea doenjang. J Korean Soc Food Sci Nutr, 33, 132-139 (2004) https://doi.org/10.3746/jkfn.2004.33.1.132
  27. Kim DH, Kim KBWR, Kim MJ, SunWoo C, Jung SA, Kim HJ, Jeong DH, Kim TW, Cho YJ, Ahn DH. Effects of heat, pH, and gamma irradiation treatments on lipase inhibitory activity of Sargassum thunbergii ethanol extract. J Korean Soc Food Sci Nutr, 41, 566-570 (2012)
  28. Kim E, Kim MR. Antioxidant activity and cytotoxicity on cancer cells of extracts from Glycyrrhizae radix cultured with Paecilomyces japonica mycelium. J East Asian Soc Diet Life, 28, 188-196 (2018) https://doi.org/10.17495/easdl.2018.6.28.3.188
  29. Kim IW, Kim YS. Changes in free amino acids, β-glucan, and volatile components of sprout soybeas fermented with Irpex lacteus mycelia. J Korean Soc Food Sci Nutr 49, 412-418 (2020) https://doi.org/10.3746/jkfn.2020.49.4.412
  30. Kim JS, Kwon CH, Son KH. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci Biotechnol Biochem, 64, 2458-2461 (2000) https://doi.org/10.1271/bbb.64.2458
  31. Kim KM, Park SE, Kim S. Effect of extract from Maclura tricuspidata twing fermented with Ganoderma Iucidum mycelium on adipocyte differentitation and inflammation in STS-L1 cells. Korean J Food Preserv, 30, 502-513 (2023) https://doi.org/10.11002/kjfp.2023.30.3.502
  32. Kim MS, Jung YS, Jang D, Cho CH, Lee SH, Han NS, Kim DO. Antioxidant capacity of 12 major soybean isoflavones and their bioavailability under simulated digestion and in human intestinal Caco-2 cells. Food Chem, 374, 131493 (2022)
  33. Kusuda M, Ueda M, Miyatake K, Terashita T. Characterization of the carbohydrase productions of an ectomycorrhizal fungus, Tricholoma matsutake. Mycoscience, 49, 291-297 (2008) https://doi.org/10.1007/S10267-008-0423-7
  34. Lebovitz HE. Alpha-glucosidase inhibitors. Endocrinol Metab Clin North Am, 26, 539-551 (1997) https://doi.org/10.1016/S0889-8529(05)70266-8
  35. Lee HY, Cho DY, Jang KJ, Lee JH, Jung JG, Kim MJ, Jeong JB, Haque MA, Cho KM. Changes of γ-aminobutyric acid, phytoestrogens, and biofunctional properties of the isoflavone-enriched soybean (Glycine max) leaves during solid lactic acid fermentation. Fermentation, 8, 525 (2022)
  36. Lee HY, Lee DH, Kim SC, Cho DY, Cho KM. Changes in nutritional components and antioxidant activities from soybean leaves containing high isoflavone contents according to different storage temperatures and periods. J Appl Biol Chem, 63, 305-317 (2020) https://doi.org/10.3839/jabc.2020.041
  37. Lee JH, Hwang JE, Son KS, Cho KM. Comparisons of nutritional constituents in soybeans during solid state fermentation times and screening for their glucosidase enzymes and antioxidant properties. Food Chem, 272, 362-371 (2019) https://doi.org/10.1016/j.foodchem.2018.08.052
  38. Lee KH, Choi HS, Hwang KA, Song J. Changes in biological qualities of soy grits Cheoggukjang by fermentation with β-glucosidase-producing Bacillus strains. J Korean Soc Food Nutr, 45, 702-710 (2016) https://doi.org/10.3746/jkfn.2016.45.5.702
  39. Lee SY, Kim JH, Park JM, Lee IC, Lee JY. Antioxidant activity and inhibition activity against α-amylase and α-glucosidase of Smilax china L. Korean J Food Preserv, 21, 254-263 (2014) https://doi.org/10.11002/kjfp.2014.21.2.254
  40. Maria John KM, Natarajan S, Luthria DL. Metabolite changes in nine different soybean varieties grown under field and green-house conditions. Food Chem, 211, 347-355 (2016) https://doi.org/10.1016/j.foodchem.2016.05.055
  41. Na HG, Jang EH, Nam DH, Kim MA, Kim MJ, Sohn EH, Kim HD, Jang KH. Physicochemical properties and isoflavone content of Chaga Cheonggukjang with Lactobacillus acidophilus KCTC 3925 starter. Korean J Food Preserv, 25, 221-228 (2018) https://doi.org/10.11002/kjfp.2018.25.2.221
  42. Park JH, Baek MR, Lee BH, Yon GH, Ryu SY, Kim YS, Park SU, Hong KS. α-Glucosidase and α-amylase inhibitory activity of compounds from roots extract of Pueraria thunbergiana. Korean J Medicinal Crop Sci, 17, 357-362 (2009)
  43. Park JS. Effect on the inhibition of pancreatic lipase and lipid metabolism of Zanthoxylum poperitum extracts. Korean J Food Nutr, 26, 615-619 (2013) https://doi.org/10.9799/ksfan.2013.26.4.615
  44. Park SK, Seo KI, Choi SH, Moon JS, Lee YH. Quality assessment of commercial doenjang prepared by traditional method. J Korean Soc Food Sci Nutr, 29, 211-217 (2000)
  45. Park YA, Bak WC, Ka KH, Koo CD. Comparative analysis of amino acid content of Lentinula edodes, a new variety of shiitake mushroom, in 'Poongnyunko'. J Muchrooms, 15, 31-37 (2017) https://doi.org/10.14480/JM.2017.15.1.31
  46. Rizzo G. The antioxidant role of soy and soy foods in human health. Antioxidants, 9, 635 (2020)
  47. Rozek A, Achaerandio I, Almajano MP, Guell C, Lopez F, Ferrando M. Solid foodstuff supplemented with phenolics from grape: Antioxidnat properties and correlation with phenolic profiles. J Agric Food Chem, 55, 5147-5155 (2007) https://doi.org/10.1021/jf070427q
  48. Sarikurkcu C, Tepe B, Kocak MS, Uren MC. Metal concentration and antioxidant activity of edible mushrooms from turkey. Food Chem, 175, 549-555 (2015) https://doi.org/10.1016/j.foodchem.2014.12.019
  49. Sergent T, Vanderstraeten J, Winand J, Beguin P, Schneider YJ. Phenolic compounds and plant extracts as potential natural anti-obesity substances. Food Chem, 135, 68-73 (2012) https://doi.org/10.1016/j.foodchem.2012.04.074
  50. Sombie PAED, Hilou A, Mounier AY, Coulibaly K, Millogo JF, Nacoulma OG. Antioxidant and anti-inflammatory activities from galls of guiera senega lensis JF gmel (combretaceae) PAED. J Medicin Plant, 5, 448-461 (2011) https://doi.org/10.3923/rjmp.2011.448.461
  51. Sulaiman CT, Balachandran I. Total phenolics and total flavonoids in selected Indian medicinal plants. Indian J Pharm Sci, 74, 258-260 (2012) https://doi.org/10.4103/0250-474X.106069
  52. Suruga K, Tomita T, Kadokura K. Soybean fermentation with basidiomycetes (medicinal mushroom mycelia). Chem Biol Technol Agric, 7, 23 (2020)
  53. Tushuizen ME, Bunck MC, Pouwels PJ, Bontemps S, Waesberghe JKV, Schindhelm RK, Mari A, Heine RJ, Diamant M. Pancreatic fat content and β-cell function in men with and without type 2 diabetes. Diabetes Care, 30, 2916-2921 (2007) https://doi.org/10.2337/dc07-0326
  54. Vagadia BH, Vanga SK, Raghavan V. Inactivation methods of soybean trypsin inhibitor: A review. Trends Food Sci Technol, 64, 115-125 (2017) https://doi.org/10.1016/j.tifs.2017.02.003
  55. Wang Y, Ma L, Pang C, Huang M, Huang Z, Gu L. Synergetic inhibition of genistein and D-glucose on α-glucosidase. Bioorg Med Chem Lett, 14, 2947-2950 (2004) https://doi.org/10.1016/j.bmcl.2004.03.035
  56. Yang H, Zhang L, Xiao G, Feng J, Zhou H, Huang F. Changes in some nutritional components of soymilk during fermentation by the culinary and medicinal mushroom Grifola frondosa. LWT - Food Sci Technol, 62, 468-473 (2015) https://doi.org/10.1016/j.lwt.2014.05.027
  57. Yang MH, Chin YW, Yoon KD, Kim J. Phenolic compounds with pancreatic lipase inhibitory activity from Korean yam (Dioscorea opposita). J Enzyme Inhib Med Chem, 29, 1-6 (2014) https://doi.org/10.3109/14756366.2012.742517
  58. Yao K, Duan Y, Li F, Tan B, Hou Y, Wu G, Yin Y. Leucine in obesity: Therapeutic prospects. Trends Pharmacol Sci. 37, 714-727 (2016) https://doi.org/10.1016/j.tips.2016.05.004
  59. You Q, Chen F, Wang X, Jiang Y, Lin S. Anti-diabetic activities of phenolic compounds in muscadine against alpha-glucosidase and pancreatic lipase. LWT - Food Sci Technol, 46, 164-168 (2012) https://doi.org/10.1016/j.lwt.2011.10.011
  60. Yuk HJ, Lee JH, Curtis-Long MJ, Lee JW, Kim YS, Ryu HW, Park CG, Jeong TS, Park KH. The most abundant polyphenol of soy leaves, coumestrol, displays potent α-glucosidase inhibitory activity. Food Chem, 126, 1057-1063 (2011) https://doi.org/10.1016/j.foodchem.2010.11.125