DOI QR코드

DOI QR Code

Water-blocking Asphyxia of N95 Medical Respirator During Hot Environment Work Tasks With Whole-body Enclosed Anti-bioaerosol Suit

  • Jintuo Zhu (Key Laboratory of Gas and Fire Control for Coal Mines (China University of Mining and Technology), Ministry of Education) ;
  • Qijun Jiang (Key Laboratory of Gas and Fire Control for Coal Mines (China University of Mining and Technology), Ministry of Education) ;
  • Yuxuan Ye (Key Laboratory of Gas and Fire Control for Coal Mines (China University of Mining and Technology), Ministry of Education) ;
  • Xinjian He (Key Laboratory of Gas and Fire Control for Coal Mines (China University of Mining and Technology), Ministry of Education) ;
  • Jiang Shao (School of Architecture & Design, China University of Mining and Technology) ;
  • Xinyu Li (Key Laboratory of Gas and Fire Control for Coal Mines (China University of Mining and Technology), Ministry of Education) ;
  • Xijie Zhao (School of Architecture & Design, China University of Mining and Technology) ;
  • Huan Xu (School of Materials Science and Physics, China University of Mining and Technology) ;
  • Qi Hu (Key Laboratory of Gas and Fire Control for Coal Mines (China University of Mining and Technology), Ministry of Education)
  • Received : 2023.07.27
  • Accepted : 2023.10.19
  • Published : 2023.12.30

Abstract

Background: During hot environment work tasks with whole-body enclosed anti-bioaerosol suit, the combined effect of heavy sweating and exhaled hot humid air may cause the N95 medical respirator to saturate with water/sweat (i.e., water-blocking). Methods: 32 young male subjects with different body mass indexes (BMI) in whole-body protection (N95 medical respirator + one-piece protective suit + head covering + protective face screen + gloves + shoe covers) were asked to simulate waste collecting from each isolated room in a seven-story building at 27-28℃, and the weight, inhalation resistance (Rf), and aerosol penetration of the respirator before worn and after water-blocking were analyzed. Results: All subjects reported water-blocking asphyxia of the N95 respirators within 36-67 min of the task. When water-blocking occurred, the Rf and 10-200 nm total aerosol penetration (Pt) of the respirators reached up to 1270-1810 Pa and 17.3-23.3%, respectively, which were 10 and 8 times of that before wearing. The most penetration particle size of the respirators increased from 49-65 nm before worn to 115-154 nm under water-blocking condition, and the corresponding maximum size-dependent aerosol penetration increased from 2.5-3.5% to 20-27%. With the increase of BMI, the water-blocking occurrence time firstly increased then reduced, while the Rf, Pt, and absorbed water all increased significantly. Conclusions: This study reveals respirator water-blocking and its serious negative impacts on respiratory protection. When performing moderate-to-high-load tasks with whole-body protection in a hot environment, it is recommended that respirator be replaced with a new one at least every hour to avoid water-blocking asphyxia.

Keywords

Acknowledgement

We thank the human subjects who took part in the study, students who supported the work and teachers who assisted the field investigation.

References

  1. Ana H, Abigail G, Eneko L. COVID-19 long-term sequelae: omicron versus Alpha and Delta variants. Infect Dis Now 2023;53(5):104688. https://doi.org/10.1016/j.idnow.2023.104688. 
  2. Wong S, Au A, Chen H, Yuen L, Li X, Lung C, Chu A, Daniel j, Chan W, Tsoi H, To K, Yuan K, Cheng V. Transmission of Omicron (B.1.1.529) - SARS-CoV-2 Variant of Concern in a designated quarantine hotel for travelers: a challenge of elimination strategy of COVID-19. Lancet Reg Health West Pac 2022;18:100360. https://doi.org/10.1016/j.lanwpc.2021.100360. 
  3. Xu X, Zhang L, Miao D, Liu S. Research on the novel medical protective clothing for COVID-19. Heliyon 2023;9(2):e13374. https://doi.org/10.1016/j.heliyon.2023.e13374. 
  4. Hu C, Wang Z, Bo R, Li C, M X. Effect of the cooling clothing integrating with phase change material on the thermal comfort of healthcare workers with personal protective equipment during the COVID-19. Case Stud Therm Eng 2023;42:102725. https://doi.org/10.1016/j.csite.2023.102725. 
  5. Roberge R, Benson S, Kim J. Thermal burden of N95 filtering facepiece respirators. Ann Occup Hyg 2012;56(7):808-14. https://doi.org/10.1093/annhyg/mes001. 
  6. Lin Y, Wei H, Chen C. Thermoregulation and subjective thermal perception of N95 respirator users: influence of significant workloads. Build Environ 2023;228:109874. https://doi.org/10.1016/j.buildenv.2022.109874. 
  7. Zheng G, Dai W. Simulation of heat stress of people wearing medical protective clothing in summer. China Saf Sci J 2023;33(1):221-6. https://doi.org/10.16265/j.cnki.issn1003-3033.2023.01.0427. 
  8. Yao W, Li X, Cao W, Li G, Ren L, Gao W. Research on the influence of indoor thermal environment and activity levels on thermal comfort in protective clothing. Energ Buildings 2023;279:112681. https://doi.org/10.1016/j.enbuild.2022.112681. 
  9. Lee J, Venugopal V, Latha P, Alhadad S, Leow C, Goh N, Tan E, Kjellstrom T, Morabito M, Lee J. Heat stress and thermal perception amongst healthcare workers during the COVID-19 pandemic in India and Singapore. Int J Env Res Pub He 2020;17(21):8100. https://doi.org/10.3390/ijerph17218100. 
  10. Gao S, Ooka R, Oh W. Experimental investigation of the effect of clothing insulation on thermal comfort indices. Build Environ 2021;187:107393. https://doi.org/10.1016/j.buildenv.2020.107393. 
  11. Yi L, Li F, Zhu Q. Numerical simulation of virus diffusion in facemask during breathing cycles. Int J Heat Mass Tran 2005;48:4229-42. https://doi.org/10.1016/j.ijheatmasstransfer.2005.03.030. 
  12. Belkin NL. A century after their introduction, are surgical masks necessary? Aorn J 1996;64(4):602-7. https://doi.org/10.1016/S0001-2092(06)63628-4. 
  13. Alexandra M, Marat S, Jay H, Hiroshi S, Nobuko S, Takafumi A, Ludwik F, Tim S, Rob F, Joseph A. Modified N95 mask delivers high inspired oxygen concentrations while effectively filtering aerosolized microparticles. Ann Emerg Med 2006;48(4):391-9. https://doi.org/10.1016/j.annemergmed.2006.06.039. 
  14. Lin H, Shang L, Li N, Xie H. Experience of using N99 masks in fever protection against Ebola virus disease in West Africa. Chin J Mod Nurs 2015;23:2840. https://doi.org/10.3760/j.issn.1674-2907.2015.23.046. 
  15. Zhang W. Failure analysis for non-powered air-purifying particle respirator affected by sweat. East China University of Science and Technology. 2014.. https://kns.cnki.net/kcms2/article/abstract?v=gmpCOCbSy_3XwvAp-0LrTQ0f3FkgEgCCf4mdh3V8zitCyi2qqYICMpirTf19YGf5jRtZYICbynxcccg3h5x-9bbfl91tfvfB0uAUF6JkFt5wIAji6N78VvRhvHa11bAOHYangFfoFTE-&uniplatform=NZKPT&language=CHS. 
  16. Li A. Research on the optimization performance of mask reuse and antibacterial hand sanitizer for emergency protection. Beijing: Beijing University of Chemical Technology; 2022. https://doi.org/10.26939/d.cnki.gbhgu.2022.000502. 
  17. Cai X, Sun Z, Qian Y, Han W, Qu J. Selection and correct wearing of masks for different occupational groups. J Microbe. Infec 2020;15(1):36-40. https://doi.org/10.3969/j.issn.1673-6184.2020.01.007. 
  18. Hsuan YH. Assessment of the physiological loads and subjective discomforts while wearing non-powered tight-fitting air-purifying respirator with canister and N95 facemask. Taiwan: China Medical University. 2007.. http://ir.cmu.edu.tw/ir/handle/310903500/740. 
  19. Roberge R, Bayer E, Powell J, Coca A, Roberge M, Benson S. Effect of exhaled moisture on breathing resistance of N95 filtering facepiece respirators. Ann Occup Hyg 2010;54(6):671-7. https://doi.org/10.1093/annhyg/meq042. 
  20. Guan X, Lin J, Han J, Gao X, Zhang Y, Hu B, Guidoin R, Wang L. Prolonged use of surgical masks and respirators affects the protection and comfort for healthcare workers. Materials 2022;15(22):7918. https://doi.org/10.3390/ma15227918. 
  21. Khan A, Abedin S, Khan S. Interaction of temperature and relative humidity for growth of COVID-19 cases and death rates. Environ Res Lett 2022;17:034048. https://doi.org/10.1088/1748-9326/ac4cf2. 
  22. Chu B, Chen R, Liu Q, Wang H. Effects of high temperature on COVID-19 deaths in U.S. counties. GeoHealth 2023;7:e2022GH000705. https://doi.org/10.1029/2022GH000705. 
  23. Monika S, Kumar R, Singh C, Takkar C, Singh W. Impact of long duration wearing of N95 masks on cardiorespiratory system and subjective sensations of health-care workers during COVID-19 era. J Anaesth Clin Pharm 2022;38(4):599-604. https://doi.org/10.4103/JOACP.JOACP_644_20. 
  24. Georgi C, Haase-Fielitz A, Meretz D, Gasert L, Butter C. The impact of commonly-worn face masks on physiological parameters and on discomfort during standard work-related physical effort. Dtsch Arztebl Int 2020;117(40):674-5. https://doi.org/10.3238/arztebl.2020.0674. 
  25. Janna E, Dejan R, Bjorn J, Sven P, Yurdagul Z, Anja B. Normal values for body composition in adults are better represented by continuous reference ranges dependent on age and BMI. Clin Nutr 2023;42(5):644-52. https://doi.org/10.1016/j.clnu.2023.03.006. 
  26. State Administration for Market Regulation of China (SAMR), Standardization Administration of China (SA). GB19083-2010: technical requirements for protective face mask for medical use; 2010 [in Chinese)]. 
  27. State Administration for Market Regulation of China (SAMR), Standardization Administration of China (SA). -2009: technical requirements for medical disposable protective clothing; 2009GB19082 [in Chinese)]. 
  28. ISO 8996 - ergonomics of the thermal environment - determination of metabolic rate. International Standard Organization; 2021. 
  29. Zhu J, Jiang Q, He X, Li X, Wang L, Zheng L, Jing P, Chen M. Filtration efficiency of N95 filtering facepiece respirators during multi-cycles of '8-hour simulated donning + disinfection'. J Hosp Infect 2022;127:91-100. https://doi.org/10.1016/j.jhin.2022.06.016. 
  30. Zhu J, He X, Wang L, Liao X, Teng G, Jing P. Performance of N95 elastomeric respirators in high humidity and high coal dust concentration environment. Int J Min Sci Techno 2022;32(1):215-24. https://doi.org/10.1016/j.ijmst.2021.11.007. 
  31. Zhao M, Liao L, Xiao W, Yu X, Wang H, Wang Q, Lin Y, Kilinc S, Price A, Chu L, Chu M, Chu S, Cui Y. Household materials selection for homemade cloth face coverings and their filtration efficiency enhancement with triboelectric charging. Nano Lett 2020;20(7):5544-52. https://doi.org/10.1021/acs.nanolett.0c02211. 
  32. Yalcin Y, Gajanan S. Porosity and barrier properties of polyethylene meltblown nonwovens. J Text 2017;108(6):1035-40. https://doi.org/10.1080/00405000.2016.1218109. 
  33. Li Y, Hua Y, Ji Z, Wu Z, Fan J, Liu Y. Dual-bionic nano-groove structured nanofibers for breathable and moisture-wicking protective respirators. J Membr Sci 2023;672:121257. https://doi.org/10.1016/j.memsci.2022.121257. 
  34. Viscusi D, Bergman M, Eimer B, Shaffer R. Evaluation of five decontamination methods for filtering facepiece respirators. Ann Occup Hyg 2009;53(8):815-27. https://doi.org/10.1093/annhyg/mep070. 
  35. Lin Y, Chen C. Thermoregulation and thermal sensation in response to wearing tight-fitting respirators and exercising in hot-and-humid indoor environment. Build Environ 2019;160:106158. https://doi.org/10.1016/j.buildenv.2019.05.036. 
  36. Li Y, Wong T, Chung J, Guo Y, Hu J, Guan Y, Yao L, Song Q, Newton E. In vivo protective performance of N95 respirator and surgical facemask. Am J Ind Med 2006;49(12):1056-65. https://doi.org/10.1002/ajim.20395. 
  37. Shui L, Yang B, Tang H, Luo Y, Hu S, Zhong X, Duan J. Physiological effects of surgical and N95 masks during exercise in the COVID-19 era. Am J Med Sci 2022;363(5):411-9. https://doi.org/10.1016/j.amjms.2022.02.006. 
  38. Johnson BD, Aaron EA, Babcock MA, Dempsey JA. Respiratory muscle fatigue during exercise: implications for performance. Med Sci Sport Exer 1996;28(9):1129-37. https://doi.org/10.1097/00005768-199609000-00008. 
  39. Lim E, Ong B, Seet R. Headaches and the N95 face-mask amongst healthcare providers. Acta Neurol Scand 2007;116(1):73. https://doi.org/10.1111/j.1600-0404.2006.00788.x. 
  40. Madan M, Madan K, Mohan A, Hadda V, Tiwari P, Mittal S. Personal protective equipment and particulate filter use during the COVID-19 pandemic: "acidotic times". Arch Bronconeumol 2021;57:83. https://doi.org/10.1016/j.arbres.2020.08.015. 
  41. Ehsanifar M. Airborne aerosols particles and COVID-19 transition. Environ Res 2021;200:111752. https://doi.org/10.1016/j.envres.2021.111752. 
  42. Konda A, Prakash A, Moss GA, Schmoldt M, Grant GD, Guha S. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano 2020;14(5):6339-47. https://doi.org/10.1021/acsnano.0c03252. 
  43. Kerner M, Schmidt K, Schumacher S, Asbach C, Antonyuk S. Ageing of electret filter media due to deposition of submicron particles - experimental and numerical investigations. Sep Purif Technol 2020;251:117299. https://doi.org/10.1016/j.seppur.2020.117299. 
  44. Wang Y, Lin Z, Zhang W. Comparison of effects of particle charging, media characteristics, humidity and aerosols on loading performance of electret media. Build Environ 2020;179:106962. https://doi.org/10.1016/j.buildenv.2020.106962. 
  45. Tcharkhtchi A, Abbasnezhad N, Seydani M, Ziraket N, Farzanehal S, Shirinbayan M. An overview of filtration efficiency through the masks: mechanisms of the aerosols penetration. Bioact Mater 2021;6(1):106-22. https://doi.org/10.1016/j.bioactmat.2020.08.002. 
  46. Martin J, Moyer E. Electrostatic respirator filter media: filter efficiency and most penetrating particle size effects. Appl Occup Environ Hyg 2010;15(8):609-17. https://doi.org/10.1080/10473220050075617. 
  47. Lee K, Liu B. On the minimum efficiency and the most penetrating particle size for fibrous filters. J Air Waste Manage 1980;30(4):377-81. https://doi.org/10.1080/00022470.1980.10464592. 
  48. Institute of Medicine, Board on Health Sciences Policy. Committee on the development of reusable facemasks for use during an influenza pandemic. Reusability of Facemasks During an Influenza Pandemic: Facing the Flu 2006:1-92. https://doi.org/10.17226/11637. Washington, DC: The National Academies Press. 
  49. Foster J, Hodder S, Lloyd A, George H. Individual responses to heat stress: implications for hyperthermia and physical work capacity. Front Physiol 2020;11:541483. https://doi.org/10.3389/fphys.2020.541483. 
  50. Rodrigues C, Leites G, Meyer F. Thermoregulatory and perceptual responses of lean and obese fit and unfit girls exercising in the heat. J Pediat-Brazil 2019;96(4):464-71. https://doi.org/10.1016/j.jped.2018.12.011. 
  51. Morrissey M, Wu Y, Zuk E, Livingston J, Casa D, Pescatello L. The impact of body fat on thermoregulation during exercise in the heat: a systematic review and meta-analysis. J Sci Med Sport 2021;24(8):843-50. https://doi.org/10.1016/j.jsams.2021.06.004. 
  52. Zhu J, He X, Bergman M, Guffey S, Nimbarte A, Zhuang Z. A pilot study of minimum operational flow for loose-fitting powered air-purifying respirators used in healthcare cleaning services. J Occup Environ Hyg 2019;16(7):440-5. https://doi.org/10.1080/15459624.2019.1605241. 
  53. U.S. Food and Drug administration Code of federal Regulations (CFR) title 21 CFR 878.4040. Product classification, respirator surgical. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPCD/classification.cfm?ID=MSH. Accessed September 25, 2023. 
  54. U.S. Centers For disease Control and prevention national Institute of occupational safety and health national personal protective technology laboratory (NIOSH/NPPTL). NIOSH-approved surgical N95 respirators. Available at: https://www.cdc.gov/niosh/npptl/topics/respirators/disp_part/respsource3surgicaln95.html. Accessed September 25, 2023. 
  55. State Administration for Market Regulation of China (SAMR), Standardization Administration of China (SA). GB2626-2019: respiratory protection-non-powered air-purifying particle respirator; 2019 [in Chinese)]. 
  56. Korea Food and Drug Administration. Medical device review division. 2020, september 25. Medical respiratory protection device permit, review guidelines [Complainant's Guide]. https://www.mfds.go.kr/brd/m_1060/view.do?seq=14666. [Accessed 25 September 2023]. 
  57. Oestenstad RK, Elliott LJ, Beasley TM. The effect of gender and respirator brand on the association of respirator fit with facial dimensions. J Occup Environ Hyg 2007;4(12):923-30. 
  58. Zhuang Z, Coffey CC, Ann RB. The effect of subject characteristics and respirator features on respirator fit. J Occup Environ Hyg 2005;2(12):641-9. 
  59. McMahon E, Wada K, Dufresne A. Implementing fit testing for N95 filtering facepiece respirators: practical information from a large cohort of hospital workers. Am J Infect Control 2008;36(4):298-300. 
  60. Chopra J, Abiakam N, Kim H, Metcalf C, Worsley P, Cheong Y. The influence of gender and ethnicity on facemasks and respiratory protective equipment fit: a systematic review and meta-analysis. BMJ Glob Health 2021;6(11):e005537. 
  61. Hazelhurst LT, Claassen N. Gender differences in the sweat response during spinning exercise. J Strength Cond Res 2006;20(3):723-4. 
  62. Giacomoni PU, Mammone T, Teri M. Gender-linked differences in human skin. J Dermatol Sci 2009;55(3):144-9.