DOI QR코드

DOI QR Code

Implementation of Visible monkey into general-purpose Monte Carlo codes: MCNP, PHITS, and Geant4

  • Soo Min Lee (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Chansoo Choi (J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida) ;
  • Bangho Shin (Department of Nuclear Engineering, Hanyang University) ;
  • Yumi Lee (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Ji Won Choi (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Bo-Wi Cheon (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Chul Hee Min (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Beom Sun Chung (Department of Anatomy, Yonsei University Wonju College of Medicine) ;
  • Hyun Joon Choi (Department of Radiation Oncology, Yonsei University Wonju College of Medicine) ;
  • Yeon Soo Yeom (Department of Radiation Convergence Engineering, Yonsei University)
  • Received : 2023.01.24
  • Accepted : 2023.07.12
  • Published : 2023.11.25

Abstract

Recently, a new monkey computational phantom, called Visible Monkey, was developed for non-ionizing radiation studies in animal research. In this study, we extended its applications to ionizing radiation studies by implementing the voxel model of the Visible Monkey into three general-purpose Monte Carlo (MC) codes: MCNP6, PHITS, and Geant4. The implementation work for MCNP and PHITS was conducted using the LATTICE, UNIVERSE, and FILL cards. The G4VNestedParameterisation class was used for Geant4. Then, organ dose coefficients (DCs) for idealized photon beams in the antero-posterior direction were calculated using the three codes and compared, showing excellent agreement (differences <3%). Additionally, organ DCs in other directions (postero-anterior, left-lateral, and right-lateral) were calculated and compared with those of the newborn and 1-year-old reference phantoms. Significant differences were observed (e.g., the stomach DC of the monkey was 5-fold greater than that of the 1-year-old phantom at 0.03 MeV) while the differences tended to decrease with increasing energy (mostly <20% at 10 MeV). The results of this study allows conducting MC simulations using the Visible Monkey to estimate organ-level doses, which should be valuable to support/improve monkey experiments involving ionizing radiation exposures.

Keywords

Acknowledgement

This work was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (No. 2022R1C1C100809312), Regional Innovation Strategy (RIS) through the NRF funded by the Ministry of Education (MOE) (No. 2022RIS-005) and Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20214000000070).

References

  1. A. O'Sullivan, X. He, E.M.S. McNiven, K. Hinde, N.W. Haggarty, B. Lonnerdal, C. M. Slupsky, Metabolomic phenotyping validates the infant rhesus monkey as a model of human infant metabolism, J. Pediatr. Gastroenterol. Nutr. 56 (2013) 355-363, https://doi.org/10.1097/MPG.0b013e31827e1f07.
  2. Monkey to human comparative anatomy of the frontal lobe association tracts I Elsevier Enhanced Reader, (n.d.). https://doi.org/10.1016/j.cortex.2011.10.001. 
  3. J.T. Lett, A.C. Lee, A.B. Cox, Late cataractogenesis in rhesus monkeys irradiated with protons and radiogenic cataract in other species, Radiat. Res. 126 (1991) 147-156, https://doi.org/10.2307/3577813. 
  4. D.H. Wood, Long-term mortality and cancer risk in irradiated rhesus monkeys, Radiat. Res. 126 (1991) 132-140, https://doi.org/10.2307/3577811. 
  5. L.C. Stephens, G.K. King, L.J. Peters, K.K. Ang, T.E. Schultheiss, J.H. Jardine, Acute and late radiation injury in rhesus monkey parotid glands. Evidence of interphase cell death, Am. J. Pathol. 124 (1986) 469-478. 
  6. J. Melville, W.L. Brown, A.A. McDowell, J.E. Pickering, J. Harrison, SOME EFFECTS OF MIXED IONIZING RADIATIONS ON RHESUS PRIMATES EXPOSED UNDER LABORATORY CONDITIONS, TEXAS UNIV AT AUSTIN RADIOBIOLOGICAL LAB, 1964. https://apps.dtic.mil/sti/citations/AD0637688. (Accessed 27 June 2022). 
  7. C.Y. Kim, A.-K. Lee, H.-D. Choi, J.S. Park, Dawn of the visible monkey: segmentation of the rhesus monkey for 2D and 3D applications, J. Kor. Med. Sci. 35 (2020) e100, https://doi.org/10.3346/jkms.2020.35.e100. 
  8. B.S. Chung, C.-Y. Jeon, J.-W. Huh, K.-J. Jeong, D. Har, K.-S. Kwack, J.S. Park, Rise of the visible monkey: sectioned images of rhesus monkey, J. Kor. Med. Sci. 34 (2019) e66, https://doi.org/10.3346/jkms.2019.34.e66. 
  9. C.J. Werner, J.S. Bull, C.J. Solomon, F.B. Brown, G.W. McKinney, M.E. Rising, D. A. Dixon, R.L. Martz, H.G. Hughes, L.J. Cox, A.J. Zukaitis, J.C. Armstrong, R. A. Forster, L. Casswell, MCNP Version 6.2 Release Notes, 2018, https://doi.org/10.2172/1419730. 
  10. Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02, (n. d.). https://www.tandfonline.com/doi/epdf/10.1080/00223131.2017.1419890?needAccess=true&role=button (accessed December 22, 2022). 
  11. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhardt, Ph Canal, D. Cano-Ott, S. Chauvie, K. Cho, G.A.P. Cirrone, G. Cooperman, M.A. Cortes-Giraldo, G. Cosmo, G. Cuttone, G. Depaola, L. Desorgher, X. Dong, A. Dotti, V.D. Elvira, G. Folger, Z. Francis, A. Galoyan, L. Garnier, M. Gayer, K.L. Genser, V.M. Grichine, S. Guatelli, P. Gueye, P. Gumplinger, A.S. Howard, I. Hrivnacova, S. Hwang, S. Incerti, A. Ivanchenko, V. N. Ivanchenko, F.W. Jones, S.Y. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitros, M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lechner, S.B. Lee, F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Murakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrovi'c, M.G. Pia, W. Pokorski, J. M. Quesada, M. Raine, M.A. Reis, A. Ribon, A. Risti'c Fira, F. Romano, G. Russo, G. Santin, T. Sasaki, D. Sawkey, J.I. Shin, I.I. Strakovsky, A. Taborda, S. Tanaka, B. Tom'e, T. Toshito, H.N. Tran, P.R. Truscott, L. Urban, V. Uzhinsky, J.M. Verbeke, M. Verderi, B.L. Wendt, H. Wenzel, D.H. Wright, D.M. Wright, T. Yamashita, J. Yarba, H. Yoshida, Recent developments in Geant4, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 835 (2016) 186-225, https://doi.org/10.1016/j.nima.2016.06.125. 
  12. W.E. Bolch, K. Eckerman, A. Endo, J.G.S. Hunt, D.W. Jokisch, C.H. Kim, K.-P. Kim, C. Lee, J. Li, N. Petoussi-Henss, T. Sato, H. Schlattl, Y.S. Yeom, M. Zankl, ICRP publication 143: paediatric reference computational phantoms, Ann. ICRP 49 (2020) 5-297, https://doi.org/10.1177/0146645320915031. 
  13. A.L. Reed, X-3 MCC, LA-UR-07-4133, Medical Physics Calculations with MCNP: a Primer, Los Alamos National Laboratory, Boston, MA, 2007. 
  14. J.T. Goorley, M.R. James, T.E. Booth, J.S. Bull, L.J. Cox, J.W. Durkee Jr., J.S. Elson, M.L. Fensin, R.A.I. Forster, J.S. Hendricks, H.G.I. Hughes, R.C. Johns, B. C. Kiedrowski, R.L. Martz, S.G. Mashnik, G.W. McKinney, D.B. Pelowitz, R.E. Prael, J.E. Sweezy, L.S. Waters, T. Wilcox, A.J. Zukaitis, Initial MCNP6 Release Overview - MCNP6 Version 1.0, 2013, https://doi.org/10.2172/1086758. 
  15. C.A. Anderson, K.C. Kelley, J.T. Goorley, MESH HUMAN PHANTOMS WITH MCNP, (n.d.) vol. 10. 
  16. J.A. Scott, 1992, $40.00, Photon, Electron, Proton and Neutron Interaction Data for Body Tissues: ICRU Report 46, International Commission on Radiation Units and Measurements, Bethesda, 1993. 
  17. Y. Iwamoto, T. Sato, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, N. Matsuda, R. Hosoyamada, K. Niita, Benchmark study of the recent version of the PHITS code, J. Nucl. Sci. Technol. 54 (2017) 617-635, https://doi.org/10.1080/ 00223131.2017.1297742. 
  18. S. Ohnishi, Gxsview: geometry and cross section viewer for calculating radiation transport, SoftwareX 14 (2021), 100681. 
  19. J. Schumann, H. Paganetti, J. Shin, B. Faddegon, J. Perl, Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4, Phys. Med. Biol. 57 (2012) 3281-3293, https://doi.org/10.1088/0031-9155/57/11/3281. 
  20. ICRP, The 2007 recommendations of the international commission on radiological protection, ICRP publication 103, Ann. ICRP 37 (2007) 1-332. 
  21. C.Y. Kim, A.-K. Lee, H.-D. Choi, J.S. Park, Posture-transformed monkey phantoms developed from a visible monkey, Appl. Sci. 11 (2021) 4430, https://doi.org/10.3390/app11104430. 
  22. ICRP, Adult Reference Computational Phantoms, ICRP publication 110, Ann. ICRP 39 (2009) 1-166. 
  23. C.H. Kim, Y.S. Yeom, N. Petoussi-Henss, M. Zankl, W.E. Bolch, C. Lee, C. Choi, T. T. Nguyen, K. Eckerman, H.S. Kim, M.C. Han, R. Qiu, B.S. Chung, H. Han, B. Shin, ICRP publication 145: adult mesh-type reference computational phantoms, Ann. ICRP 49 (2020) 13-201, https://doi.org/10.1177/0146645319893605.