DOI QR코드

DOI QR Code

Development of a DDA+PGA-combined non-destructive active interrogation system in "Active-N"

  • Kazuyoshi Furutaka (Nuclear Science and Engineering Center, Japan Atomic Energy Agency) ;
  • Akira Ohzu (Nuclear Science and Engineering Center, Japan Atomic Energy Agency) ;
  • Yosuke Toh (Nuclear Science and Engineering Center, Japan Atomic Energy Agency)
  • Received : 2023.01.04
  • Accepted : 2023.07.11
  • Published : 2023.11.25

Abstract

An integrated neutron interrogation system has been developed for non-destructive assay of highly-radioactive special nuclear materials, to accumulate knowledge of the method through developing and using it. The system combines a differential die-away (DDA) measurement system for the quantification of nuclear materials and a prompt gamma-ray analysis (PGA) system for the detection of neutron poisons which disturb the DDA measurements; a common D-T neutron generator is used. A special care has been taken for the selection of materials to reduce the background gamma rays produced by the interrogation neutrons. A series of measurements were performed to test the basic performance of the system. The results show that the DDA system can quantify plutonium of as small as 20 mg and it is not affected by intense neutron background up to 1.57 × 107 s-1 and gamma ray of 4.43 × 1010 s-1. The gamma-ray background counting rate at the PGA detector was reduced down to 3.9 × 103 s-1 even with the use of the D-T neutron generator. The test measurements show that the PGA system is capable of detecting 0.783 g of boron and about 86.8 g of gadolinium in 30 min.

Keywords

Acknowledgement

We would like to thank Ms. M. Komatsuzaki, Mr. K. Morita, Mr. N. Kobayashi, Ms. Kurihara, and Mr. M. Takase, for their maintenance of the apparatus and preparation of measurements. Thanks are also due to the staff working in BECKY section of NUCEF in JAEA for their cooperation. This research was implemented under the subsidy for nuclear security promotion from MEXT (Ministry of Education, Culture, Sports, Science and Technology).

References

  1. Safeguards explained. https://www.iaea.org/topics/safeguards-explained. (Accessed 12 December 2022).
  2. Nuclear material control and accounting. https://www.nrc.gov/materials/fuel-cycle-fac/nuclear-mat-ctrl-acctng.html. (Accessed 12 December 2022).
  3. Special nuclear material. https://www.nrc.gov/materials/sp-nucmaterials.html. (Accessed 12 December 2022).
  4. S.J. Tobin, H.O. Menlove, M.T. Swinhoe, M.A. Schear, Next Generation Safeguards Initiative research to determine the Pu mass in spent fuel assemblies: purpose, approach, constraints, implementation, and calibration, Nucl. Instrum. Methods Phys. Res. A. 652 (2011) 73-75.
  5. H. Tomikawa, A. Ishimi, Y. Nauchi, Y. Ham, D. Vo, C. Heinberg, C. Carroll, Recommendations for measurement systems for nuclear material accountancy of Fukushima Daiichi fuel debris: gamma technologies, in: Proceedings of INMM 55th Annual Meeting (Internet), Atlanta, 2014.
  6. T. Nagatani, M. Kureta, M. Komeda, A. LaFleur, M. Swinhole, H. Menlove, J. Chapman, C. Carroll, C. Heinberg, Recommendations for measurement systems for nuclear material accountancy of Fukushima Daiichi fuel debris: neutron technologies, in: Proceedings of INMM 55th Annual Meeting (Internet), Atlanta, 2014.
  7. H. Tsuchiya, Y. Toh, A. Ohzu, K. Furutaka, F. Kitatani, M. Maeda, M. Komeda, Development of an integrated non-destructive analysis system, Active-N, J. Nucl. Sci. Technol., doi:10.1080/00223131.2023.2192529.
  8. H.W. Kraner, Fast neutron damage in germanium detectors, IEEE Trans. Nucl. Sci. NS- 27 (1980) 218-235.
  9. L.S. Darken, Role of disordered regions in fast-neutron damage of HPGe detectors, Nucl. Instrum. Methods Phys. Res. B74 (1993) 523-526.
  10. V. Borrel, B. Kandel, F. Albernhe, P. Frabel, B. Cordier, G. Tauzin, S. Crespin, R. Coszach, J.M. Denis, P. Leleux, Fast neutron-induced damage in INTEGRAL n-type HPGe detectors, Nucl. Instrum. Methods Phys. Res. A. 430 (1999) 348-362.
  11. T.W. Raudorf, R.C. Trammell, S. Wagner, R.H. Pehl, Performance of reverse electrode HPGe coaxial detectors after light damage by fast neutrons, IEEE Trans. Nucl. Sci. NS- 31 (1984) 253-257.
  12. K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, J. Katakura, JENDL-4.0: a new library for nuclear science and engineering, J. Nucl. Sci. Technol. 48 (2011) 1-30.
  13. A. Ohzu, M. Komeda, M. Kureta, N. Zaima, Y. Nakatsuka, S. Nakashima, Development of non-destructive assay system using fast neutron direct interrogation method for actual uranium waste drums, Trans. At. Energy Soc. Jpn. 15 (2016) (in Japanese).
  14. R.T. Kouzes, J.H. Ely, L.E. Erikson, W.J. Kernan, A.T. Lintereur, E.R. Siciliano, D. L. Stephens, D.C. Stromswold, R.M. van Ginhoven, M.L. Woodring, Neutron detection alternatives to 3 He for national security applications, Nucl. Instrum. Methods Phys. Res. A. 623 (2010) 1035-1045.
  15. R.H. Pehl, N.W. Madden, J.H. Elliott, Radiation damage resistance of reverse electrode Ge coaxial detectors, IEEE Trans. Nucl. Sci. NS- 26 (1979) 321-323.
  16. K. Furutaka, Y. Toh, Study of shields against D-T neutrons for prompt gamma-ray analysis apparatus in Active-N, in: Proceedings of SNA+MC2020, 2020, pp. 297-304.
  17. Committee of handbook on process and chemistry of nuclear fuel reprocessing, handbook on process and chemistry of nuclear fuel reprocessing, JAEA-Review 2015-002, https://jopss.jaea.go.jp/pdfdata/JAEA-Review-2015-002.pdf, 2015. (Accessed 31 December 2022) (in Japanese).
  18. Evaluated nuclear structure data file. https://www.nndc.bnl.gov/ensdf/. (Accessed 12 December 2022).
  19. W.C. Johnson, InterSpec - spectral radiation analysis software. https://sandialabs.github.io/InterSpec/. (Accessed 12 December 2022).
  20. D.C. Radford, Notes on the use of the program gf3. https://radware.phy.ornl.gov/gf3/gf3.html. (Accessed 12 December 2022).
  21. D.C. Radford, RadWare. https://radware.phy.ornl.gov/. (Accessed 12 December 2022).
  22. D.L. Anderson, T. Belgya, R.B. Firestone, Z. Kasztovszky, R.M. Lindstrom, G. L. Molnar, Z. Revay, C. Yonezawa, Handbook of Prompt Gamma Activation Analysis, Kluwer Academic Publishers, 2004.
  23. A.M. Demidov, L.I. Govor, Yu.K. Cherepantsev, M.R. Ahmed, S. Al-Najjar, M.A. AlAmili, N. Al-Assafi, N. Rammo, Atlas of Gamma-Ray Spectra from the Inelastic Scattering of Reactor Fast Neutrons, Atomizdat, Moscow, 1978.
  24. A.M. Hurst, L.A. Bernstein, T. Kawano, A.M. Lewis, K. Song, The Baghdad Atlas: a relational database of inelastic neutron-scattering (n,n'γ) data, Nucl. Instrum. Methods Phys. Res. A. 995 (2021), 165095.
  25. M. Maeda, K. Furutaka, M. Kureta, A. Ohzu, M. Komeda, Y. Toh, Simulation study on the design of nondestructive measurement system using fast neutron direct interrogation method to nuclear materials in fuel debris, J. Nucl. Sci. Technol. 56 (2019) 617-628, https://doi.org/10.1080/00223131.2019.1611500.
  26. G. Vourvopoulos, Pulsed fast/thermal neutron analysis: a technique for explosives detection, Talanta 54 (2001) 459-468.
  27. S. Urlass, A. Junghans, F. Mingrone, P. Peronnard, D. Stach, L. Tassan-Got, D. Weinberger, Gating of charge sensitive preamplifiers for the use at pulsed radiation sources, Nucl. Instrum. Methods Phys. Res. A. 1002 (2021), 165297.
  28. M. Koizumi, H. Tsuchiya, F. Kitatani, H. Harada, J. Heyse, S. Kopecky, W. Mondelaers, C. Paradela, P. Schillebeeckx, LaBr3 γ-ray spectrometer for detecting 10B in debris of melted nuclear fuel, Nucl. Instrum. Methods Phys. Res. A. 837 (2016) 153-160.
  29. H. Tsuchiya, H. Harada, M. Koizumi, F. Kitatani, J. Takamine, M. Kureta, H. Iimura, A Monte Carlo simulation to study a design of a gamma-ray detector for neutron resonance densitometry, Nucl. Instrum. Methods Phys. Res. A. 729 (2013) 338-345.