DOI QR코드

DOI QR Code

Development, validation and implementation of multiple radioactive particle tracking technique

  • Mehul S. Vesvikar (BIOMATH, Dept of Applied Mathematics, Biometrics and Process Control, Ghent University) ;
  • Thaar M. Aljuwaya (Nuclear Engineering and Radiation Science Department, Missouri University of Science and Technology (Missouri S&T)) ;
  • Mahmoud M. Taha (College of Engineering and Technology, American University of the Middle East) ;
  • Muthanna H. Al-Dahhan (Nuclear Engineering and Radiation Science Department, Missouri University of Science and Technology (Missouri S&T))
  • Received : 2022.11.09
  • Accepted : 2023.07.31
  • Published : 2023.11.25

Abstract

Computer Automated Radioactive Particle Tracking (CARPT) technique has been successfully utilized to measure the velocity profiles and mixing parameters in different multiphase flow systems where a single radioactive tracer is used to track the tagged phase. However, many industrial processes use a wide range of particles with different physical properties where solid particles could vary in size, shape and density. For application in such systems, the capability of current single tracer CARPT can be advanced to track more than one particle simultaneously. Tracking multiple particles will thus enable to track the motion of particles of different size shape and density, determine segregation of particles and probing particle interactions. In this work, a newly developed Multiple Radioactive Particle Tracking technique (M-RPT) used to track two different radioactive tracers is demonstrated. The M-RPT electronics was developed that can differentiate between gamma counts obtained from the different radioactive tracers on the basis of their gamma energy peak. The M-RPT technique was validated by tracking two stationary and moving particles (Sc-46 and Co-60) simultaneously. Finally, M-RPT was successfully implemented to track two phases, solid and liquid, simultaneously in three phase slurry bubble column reactors.

Keywords

Acknowledgement

The authors would like to thank the United States Department of Energy for sponsoring the research project (Identification Number: DE-FC36-01GO11054), and the Oak Ridge National Laboratory group for their support.

References

  1. M.H. Al-Dahhan, Radioisotopes applications in industry: an overview, Atoms For Peace An Int. J. 2 (2009) 324-337, https://doi.org/10.1504/AFP.2009.027866. 
  2. M.P. Dudukovic, Opaque multiphase flows: experiments and modeling, Exp. Therm. Fluid Sci. 26 (2002) 747-761, https://doi.org/10.1016/S0894-1777(02)00185-1. 
  3. M.A.S. Mohd Yunos, S.A. Hussain, S.M. Sipaun, Industrial radiotracer application in flow rate measurement and flowmeter calibration using 99mTc and 198Au nanoparticles radioisotope, Appl. Radiat. Isot. 143 (2019) 24-28, https://doi.org/10.1016/j.apradiso.2018.10.008. 
  4. V. Khane, I.A. Said, M.H. Al-Dahhan, Experimental investigation of pebble flow dynamics using radioactive particle tracking technique in a scaled-down Pebble Bed Modular Reactor (PBMR), Nucl. Eng. Des. 302 (2016) 1-11, https://doi.org/10.1016/j.nucengdes.2016.03.031. Part A. 
  5. V. Khane, M.M. Taha, M.H. Al-Dahhan, Experimental investigation of the overall residence time of pebbles in a pebble bed reactor (PBR) using radioactive pebble, Prog. Nucl. Energy 93 (2016) 267-276, https://doi.org/10.1016/j.pnucene.2016.09.001. 
  6. N. Ali, T. Al-Juwaya, M. Al-Dahhan, An advanced evaluation of spouted beds scaleup for coating TRISO nuclear fuel particles using Radioactive Particle Tracking (RPT), Exp. Therm. Fluid Sci. 80 (2017) 90-104, https://doi.org/10.1016/j.expthermflusci.2016.08.002. 
  7. N. Ali, T. Al-Juwaya, M. Al-Dahhan, An advanced evaluation of the mechanistic scale-up methodology of gas-solid spouted beds using radioactive particle tracking, Particuology 34 (2017) 48-60, https://doi.org/10.1016/j.partic.2016.11.005. 
  8. T. Al-Juwaya, N. Ali, M. Al-Dahhan, Investigation of hydrodynamics of binary solids mixture spouted beds using radioactive particle tracking (RPT) technique, Chem. Eng. Res. Des. 148 (2019) 21-44, https://doi.org/10.1016/j.cherd.2019.05.051. 
  9. T. Al-Juwaya, N. Ali, M. Al-Dahhan, Investigation of cross-sectional gas-solid distributions in spouted beds using advanced non-invasive gamma-ray computed tomography (CT), Exp. Therm. Fluid Sci. 86 (2017) 37-53, https://doi.org/10.1016/j.expthermflusci.2017.03.029. 
  10. N. Ali, T. Aljuwaya, M. Al-Dahhan, Evaluating the new mechanistic scale-up methodology of gas-solid spouted beds using gamma ray computed tomography (CT), Exp. Therm. Fluid Sci. 104 (2019) 186-198, https://doi.org/10.1016/j.expthermflusci.2019.01.029. 
  11. A.J. Sultan, L.S. Sabri, H.S. Majdi, S.K. Jebur, M.H. Al-Dahhan, Study of gas holdup distribution in cylindrical split airlift reactor by using gamma-ray densitometry (GRD), Processes 10 (2022) 910. 
  12. C.M. Salgado, W.L. Salgado, R.S.d.F. Dam, C.C. Conti, Calculation of scales in oil pipeline using gamma-ray scattering and artificial intelligence, Measurement 179 (2021), 109455, https://doi.org/10.1016/j.measurement.2021.109455. 
  13. A.M. Mayet, T.-C. Chen, S.M. Alizadeh, A.A. Al-Qahtani, A.K. Alanazi, N. A. Ghamry, H.H. Alhashim, E. Eftekhari-Zadeh, Optimizing the gamma ray-based detection system to measure the scale thickness in three-phase flow through oil and petrochemical pipelines in view of stratified regime, Processes 10 (2022), https://doi.org/10.3390/pr10091866. 
  14. M.K. Al Mesfer, A.J. Sultan, M.H. Al-Dahhan, Study the effect of dense internals on the liquid velocity field and turbulent parameters in bubble column for Fischer-Tropsch (FT) synthesis by using Radioactive Particle Tracking (RPT) technique, Chem. Eng. Sci. 161 (2017) 228-248, https://doi.org/10.1016/j.ces.2016.12.001. 
  15. J. Alvare, M.H. Al-Dahhan, Liquid phase mixing in trayed bubble column reactors, Chem. Eng. Sci. 61 (2006) 1819-1835, https://doi.org/10.1016/j.ces.2005.10.015. 
  16. A.J. Sultan, L.S. Sabri, M.H. Al-Dahhan, Influence of the size of heat exchanging internals on the gas holdup distribution in a bubble column using gamma-ray computed tomography, Chem. Eng. Sci. 186 (2018) 1-25, https://doi.org/10.1016/j.ces.2018.04.021. 
  17. J. Chen, A. Kemoun, M.H. Al-Dahhan, M.P. Dudukovic, D.J. Lee, L.-S. Fan, Comparative hydrodynamics study in a bubble column using computer-automated radioactive particle tracking (CARPT)/computed tomography (CT) and particle image velocimetry (PIV), Chem. Eng. Sci. 54 (1999) 2199-2207, https://doi.org/10.1016/S0009-2509(98)00349-2. 
  18. N. Rados, A. Shaikh, M.H. Al-Dahhan, Solids flow mapping in a high pressure slurry bubble column, Chem. Eng. Sci. 60 (2005) 6067-6072, https://doi.org/10.1016/j.ces.2005.04.087. 
  19. J. Chen, N. Rados, M.H. Al-Dahhan, M.P. Dudukovic, D. Nguyen, K. Parimi, Particle motion in packed/ebullated beds by CT and CARPT, AIChE J. 47 (2001) 994-1004, https://doi.org/10.1002/aic.690470506. 
  20. S. Roy, J. Chen, S.B. Kumar, M.H. Al-Dahhan, M.P. Dudukovic, Tomographic and particle tracking studies in a Liquid- Solid riser, Ind. Eng. Chem. Res. 36 (1997) 4666-4669, https://doi.org/10.1021/ie970292l. 
  21. A. Efhaima, M.H. Al-Dahhan, Assessment of scale-up dimensionless groups methodology of gas-solid fluidized beds using advanced non-invasive measurement techniques (CT and RPT), Can. J. Chem. Eng. 95 (2017) 656-669, https://doi.org/10.1002/cjce.22745. 
  22. A.R. Rammohan, A. Kemoun, M.H. Al-Dahhan, M.P. Dudukovic, Characterization of single phase flows in stirred tanks via computer automated radioactive particle tracking (CARPT), Chem. Eng. Res. Des. 79 (2001) 831-844, https://doi.org/10.1205/02638760152721343. 
  23. A.R. Rammohan, A. Kemoun, M.H. Al-Dahhan, M.P. Dudukovic, A Lagrangian description of flows in stirred tanks via computer-automated radioactive particle tracking (CARPT), Chem. Eng. Sci. 56 (2001) 2629-2639, https://doi.org/10.1016/S0009-2509(00)00537-6. 
  24. H.-P. Luo, A. Kemoun, M.H. Al-Dahhan, J.M.F. Sevilla, J.L.G.a. Sanchez, F.G. a. Camacho, E.M. Grima, Analysis of photobioreactors for culturing high-value microalgae and cyanobacteria via an advanced diagnostic technique: CARPT, Chem. Eng. Sci. 58 (2003) 2519-2527, https://doi.org/10.1016/S0009-2509(03)00098-8. 
  25. L.S. Sabri, A.J. Sultan, M.H. Al-Dahhan, Split internal-loop photobioreactor for Scenedesmus sp. microalgae: culturing and hydrodynamics, Chin. J. Chem. Eng. 33 (2021) 236-248, https://doi.org/10.1016/j.cjche.2020.07.058. 
  26. L.S. Sabri, A.J. Sultan, M.H. Al-Dahhan, Mapping of microalgae culturing via radioactive particle tracking, Chem. Eng. Sci. 192 (2018) 739-758, https://doi.org/10.1016/j.ces.2018.08.012. 
  27. L.S. Sabri, A.J. Sultan, H.S. Majdi, S.K. Jebur, M.H. Al-Dahhan, A detailed hydrodynamic study of the split-plate airlift reactor by using non-invasive gamma-ray techniques, ChemEngineering 6 (2022) 18. 
  28. M.S. Vesvikar, M. Al-Dahhan, Hydrodynamics investigation of laboratory-scale Internal Gas-lift loop anaerobic digester using non-invasive CAPRT technique, Biomass Bioenergy 84 (2016) 98-106, https://doi.org/10.1016/j.biombioe.2015.11.014. 
  29. M.S. Vesvikar, R. Varma, K. Karim, M. Al-Dahhan, Flow pattern visualization in a mimic anaerobic digester: experimental and computational studies, Water Sci. Technol. : a journal of the International Association on Water Pollution Research 52 (2005) 537-543. 
  30. W. Du, J. Zhang, S. Bao, J. Xu, L. Zhang, Numerical investigation of particle mixing and segregation in spouted beds with binary mixtures of particles, Powder Technol. 301 (2016) 1159-1171, https://doi.org/10.1016/j.powtec.2016.07.071. 
  31. K.G. Santos, M.C.C. Francisquetti, R.A. Malagoni, M.A.S. Barrozo, Fluid dynamic behavior in a spouted bed with binary mixtures differing in size, Dry. Technol. 33 (2015) 1746-1757, https://doi.org/10.1080/07373937.2015.1036284. 
  32. R.K. Upadhyay, S. Roy, Investigation of hydrodynamics of binary fluidized beds via radioactive particle tracking and dual-source densitometry, Can. J. Chem. Eng. 88 (2010) 601-610, https://doi.org/10.1002/cjce.20334. 
  33. L. Huilin, H. Yurong, D. Gidaspow, Y. Lidan, Q. Yukun, Size segregation of binary mixture of solids in bubbling fluidized beds, Powder Technol. 134 (2003) 86-97, https://doi.org/10.1016/S0032-5910(03)00126-8. 
  34. L. Huilin, H. Yurong, D. Gidaspow, Hydrodynamic modelling of binary mixture in a gas bubbling fluidized bed using the kinetic theory of granular flow, Chem. Eng. Sci. 58 (2003) 1197-1205, https://doi.org/10.1016/S0009-2509(02)00635-8. 
  35. J.S. Lin, M.M. Chen, B.T. Chao, A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds, AIChE J. 31 (1985) 465-473, https://doi.org/10.1002/aic.690310314. 
  36. F. Larachi, G. Kennedy, J. Chaouki, A γ-ray detection system for 3-D particle tracking in multiphase reactors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 338 (1994) 568-576, https://doi.org/10.1016/0168-9002(94)91343-9. 
  37. S. Roy, F. Larachi, M.H. Al-Dahhan, M.P. Dudukovic, Optimal design of radioactive particle tracking experiments for flow mapping in opaque multiphase reactors, Appl. Radiat. Isot. 56 (2002) 485-503, https://doi.org/10.1016/S0969-8043(01)00142-7. 
  38. S. Bhusarapu, M. Al-Dahhan, M.P. Dudukovic, Quantification of solids flow in a gas-solid riser: single radioactive particle tracking, Chem. Eng. Sci. 59 (2004) 5381-5386, https://doi.org/10.1016/j.ces.2004.07.052. 
  39. V. Mosorov, J. Abdullah, MCNP5 code in radioactive particle tracking, Appl. Radiat. Isot. 69 (2011) 1287-1293, https://doi.org/10.1016/j.apradiso.2011.04.028. 
  40. O. Dube, D. Dube, J. Chaouki, F. Bertrand, Optimization of detector positioning in the radioactive particle tracking technique, Appl. Radiat. Isot. 89 (2014) 109-124, https://doi.org/10.1016/j.apradiso.2014.02.019. 
  41. M.A.S.M. Yunos, S.A. Hussain, H.M. Yusoff, J. Abdullah, Preparation and quantification of radioactive particles for tracking hydrodynamic behavior in multiphase reactors, Appl. Radiat. Isot. 91 (2014) 57-61, https://doi.org/10.1016/j.apradiso.2014.05.015. 
  42. V. Mosorov, Strategy for fitting source strength and reconstruction procedure in radioactive particle tracking, Appl. Radiat. Isot. 103 (2015) 65-71, https://doi.org/10.1016/j.apradiso.2015.06.007. 
  43. M. Rasouli, F. Bertrand, J. Chaouki, A multiple radioactive particle tracking technique to investigate particulate flows, AIChE J. 61 (2015) 384-394, https://doi.org/10.1002/aic.14644. 
  44. M.A.S. Mohd Yunos, S.M. Sipaun, S.A. Hussain, Feasibility of using radioactive particle tracking as an alternative technique for experimental investigation in bubble column reactor, IOP Conf. Ser. Mater. Sci. Eng. 554 (2019), 012005, https://doi.org/10.1088/1757-899x/554/1/012005. 
  45. J. Biswal, S. Goswami, R.K. Upadhyay, H.J. Pant, Methods of preparation of microparticles for radioactive particle tracking experiments, Appl. Radiat. Isot. (2020), 109380, https://doi.org/10.1016/j.apradiso.2020.109380. 
  46. A.A. Alghamdi, T.M. Aljuwaya, A.S. Alomari, M.H. Al-Dahhan, GEANT4 simulation for radioactive particle tracking (RPT) technique, Sensors 22 (2022) 1223. 
  47. G. Lindner, S. Shi, S. Vucetic, S. Miskovic, Transfer learning for radioactive particle tracking, Chem. Eng. Sci. 248 (2022), 117190, https://doi.org/10.1016/j.ces.2021.117190. 
  48. G.A. Lindner, S. Miskovic, GIPPE-RPT: geant4 interface for particle physics experiments applied to Radioactive Particle Tracking, Appl. Radiat. Isot. 180 (2022), 110041, https://doi.org/10.1016/j.apradiso.2021.110041. 
  49. M.S. Vesvikar, UNDERSTANDING THE HYDRODYNAMICS AND PERFORMANCE OF ANAEROBIC DIGESTERS, Dissertation, WASHINGTON UNIVERSITY, Saint Louis, Missouri, 2006. 
  50. Y. Wang, CRC Handbook of Radioactive Nuclides, Chemical Rubber Co., Cleveland (Ohio), 1969. 
  51. L.S. Sabri, A.J. Sultan, M.H. Al-Dahhan, Assessment of RPT calibration need during microalgae culturing and other biochemical processes, in: Proceedings of the 2017 International Conference on Environmental Impacts of the Oil and Gas Industries: Kurdistan Region of Iraq as a Case Study (EIOGI), 17-19 April 2017, 2017, pp. 59-64. 
  52. S. Bhusarapu, M.H. Al-Dahhan, M.P. Dudukovic, Solids flow mapping in a gas-solid riser: mean holdup and velocity fields, Powder Technol. 163 (2006) 98-123, https://doi.org/10.1016/j.powtec.2006.01.013.