DOI QR코드

DOI QR Code

International case study comparing PSA modeling approaches for nuclear digital I&C - OECD/NEA task DIGMAP

  • Received : 2023.01.11
  • Accepted : 2023.08.04
  • Published : 2023.12.25

Abstract

Nuclear power plants are increasingly being equipped with digital I&C systems. Although some probabilistic safety assessment (PSA) models for the digital I&C of nuclear power plants have been constructed, there is currently no specific internationally agreed guidance for their modeling. This paper presents an initiative by the OECD Nuclear Energy Agency called "Digital I&C PSA - Comparative application of DIGital I&C Modelling Approaches for PSA (DIGMAP)", which aimed to advance the field towards practical and defendable modeling principles. The task, carried out in 2017-2021, used a simplified description of a plant focusing on the digital I&C systems important to safety, for which the participating organizations independently developed their own PSA models. Through comparison of the PSA models, sensitivity analyses as well as observations throughout the whole activity, both qualitative and quantitative lessons were learned. These include insights on failure behavior of digital I&C systems, experience from models with different levels of abstraction, benefits from benchmarking as well as major contributors to the core damage frequency and those with minor effect. The study also highlighted the challenges with modeling of large common cause component groups and the difficulties associated with estimation of key software and common cause failure parameters.

Keywords

Acknowledgement

The work presented in this paper is part of the WGRISK programme of work supported by the OECD/NEA. EDF thanks IRSN for its invitation to participate in this work. National participations were particularly supported by The Finnish Research Programme on Nuclear Power Plant Safety 2015-2018 (SAFIR2018) and 2019-2022 (SAFIR2022), the National Research Foundation of South Korea Grant funded by the Korean Government (MSIT) (RS-2022-00144175), the Dutch research programme on nuclear energy and technology funded by the Ministry of Economic Affairs and Climate, the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (Bundesministerium fur Umweltschutz und Reaktorsicherheit, BMU), and the Technology Agency of the Czech Republic through the Competence Centre CANUT (Centre for Advanced Nuclear Technologies).

References

  1. Q.Z. Liang, Y. Guo, C.H. Peng, A review on the research status of reliability analysis of the digital instrument and control system in NPPs, in: IOP Conference Series: Earth and Environmental Science, Vol. 427, 2020. https://doi.org/10.1088/1755-1315/427/1/012018.
  2. T.-L. Chu, M. Yue, M. Martinez-Guridi, J. Lehner, Review of Quantitative Software Reliability Methods, Brookhaven National Lab, 2010. BNL-94047-2010, https://doi.org/10.2172/1013511.
  3. T. Aldemir, D.W. Miller, M.P. Stovsky, J. Kirschenbaum, P. Bucci, A.W. Fentiman, L.T. Mangan, Current State of Reliability Modeling Methodologies for Digital Systems and Their Acceptance Criteria for Nuclear Power Plant Assessments, U.S. NRC, 2006. NUREG/CR-6901, https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6901/index.html.
  4. S. Auth'en, J.-E. Holmberg, Reliability analysis of digital systems in a probabilistic risk analysis for nuclear power plants, Nucl. Eng. Technol. 44 (2012) 471-482, https://doi.org/10.5516/NET.03.2012.707.
  5. S.J. Lee, W. Jung, J.-E. Yang, PSA model with consideration of the effect of fault-tolerant techniques in digital I&C systems, Ann. Nucl. Energy 87 (2016) 375-384, https://doi.org/10.1016/j.anucene.2015.07.039.
  6. Q. Liang, M. Liu, P. Xiao, Y. Guo, J. Xiao, C. Peng, Reliability assessment for a safety-related digital reactor protection system using event-tree/fault-tree (ET/FT) method, Sci. Technol. of Nucl. Install. 2020 (2020), 8839399, https://doi.org/10.1155/2020/8839399.
  7. S.H. Lee, H.E. Kim, K.S. Son, S.M. Shin, S.J. Lee, H.G. Kang, Reliability modeling of safety-critical network communication in a digitalized nuclear power plant, Reliab. Eng. Syst. Saf. 144 (2015) 285-295, https://doi.org/10.1016/j.ress.2015.07.029.
  8. H. Bao, S. Zhang, R. Youngblood, T. Shorthill, P. Pandit, E. Chen, J. Park, H. Ban, M. Diaconeasa, N. Dinh, S. Lawrence, Risk Analysis of Various Design Architectures for High Safety-Significant Safety-Related Digital Instrumentation and Control Systems of Nuclear Power Plants during Accident Scenarios, U.S. Department of Energy, 2022. INL/RPT-22-70056.
  9. J.H. Bickel, Risk implications of digital reactor protection system operating experience, Reliab. Eng. Syst. Saf. 93 (2008) 107-124, https://doi.org/10.1016/j.ress.2006.10.015.
  10. H.G. Kang, S.-C. Jang, A quantitative study on risk issues in safety feature control system design in digitalized nuclear power plant, J. Nucl. Sci. Technol. 45 (2008) 850-858, https://doi.org/10.1080/18811248.2008.9711486.
  11. A.S. Saber, M.K. Shaat, A. El-Sayed, H. Torkey, M.A. Shouman, Reliability analysis model of the digital reactor protection system, in: 2020 37th National Radio Science Conference (NRSC), Cairo, Egypt, 8-10 Sept, 2020, https://doi.org/10.1109/NRSC49500.2020.9235117.
  12. H. Torkey, A.S. Saber, M. Shaat, A. El-Sayed, M.A. Shouman, Bayesian belief-based model for reliability improvement of the digital reactor protection system, Nucl. Sci. Tech. 31 (2020), https://doi.org/10.1007/s41365-020-00814-6.
  13. R.A. Fahmy, Development of dynamic fault tree model for reactor protection system, Process Saf. Prog. 40 (2021), e12201, https://doi.org/10.1002/prs.12201.
  14. Z. Ma, H. Yoshikawa, M. Yang, Reliability model of the digital reactor protection system considering the repair time and common cause failure, J. Nucl. Sci. Technol. 54 (2017) 539-551, https://doi.org/10.1080/00223131.2017.1291375.
  15. J. Zhao, Y.-N. He, P.-F. Gu, W.-H. Chen, F. Gao, Reliability of digital reactor protection system based on extenics, SpringerPlus 5 (2016) 1953, https://doi.org/10.1186/s40064-016-3618-y.
  16. Y. Bulba, Y. Ponochovny, V.V. Sklyar, A. Ivasiuk, Classification and research of the reactor protection instrumentation and control system functional safety markov models in a normal operation mode, in: International Conference on Information and Communication Technologies in Education, Research, and Industrial Applications, Kyiv, Ukraine, June 21-24, 2016.
  17. I. Ahmed, E. Zio, G. Heo, Risk-informed approach to the safety improvement of the reactor protection system of the AGN-201K research reactor, Nucl. Eng. Technol. 52 (2020) 764-775, https://doi.org/10.1016/j.net.2019.09.015.
  18. M.A. Shouman, A.S. Saber, M.K. Shaat, A. El-Sayed, H. Torkey, A hybrid machine learning model for reliability evaluation of the reactor protection system, Alex. Eng. J. 61 (2022) 6797-6809, https://doi.org/10.1016/j.aej.2021.12.026.
  19. S. Authen, J.-E. Holmberg, T. Tyrvainen, L. Zamani, Guidelines for Reliability Analysis of Digital Systems in PSA Context - Final Report, Nordic nuclear safety research, Roskilde, Denmark, 2015. NKS-330, https://www.nks.org/en/nks_reports/view_document.htm?id=111010212773211.
  20. NEA, Recommendations on Assessing Digital System Reliability in Probabilistic Risk Assessments of Nuclear Power Plants, OECD/NEA/CSNI, Paris, France, 2009. NEA/CSNI/R(2009)18, https://www.oecd-nea.org/jcms/pl_18874/recommendations-on-assessing-digital-system-reliability-in-probabilistic-risk-assessments-of-nuclear-power-plants.
  21. NEA, Failure Modes Taxonomy for Reliability Assessment of Digital Instrumentation and Control Systems for Probabilistic Risk Analysis, OECD/NEA/CSNI, Paris, France, 2015. NEA/CSNI/R(2014)16, https://www.oecd-nea.org/jcms/pl_19588/failure-modes-taxonomy-for-reliability-assessment-of-digital-instrumentation-and-control-systems-for-probabilistic-risk-analysis.
  22. NEA, Digital I&C PSA - Comparative Application of Digital I&C Modelling Approaches for PSA, Main Report and Appendix A, 2023. NEA/CSNI/R(2021)14. will be available at: www.oecd.org.
  23. NEA, Digital I&C PSA - Comparative Application of Digital I&C Modelling Approaches for PSA, Appendices B0-B6, 2023. NEA/CSNI/R(2021)14/ADD. will be available at: www.oecd.org.
  24. M. Porthin, S.M. Shin, T. Tyrvainen, C. Mueller, E. Piljugin, J. Stiller, R. Quatrain, L. Granseigne, H. Brinkman, P. Picca, J. Gordon, J. Sedlak, Comparative application of digital I&C modeling approaches for PSA, in: International Topical Meeting on Probabilistic Safety Assessment and Analysis (PSA 2019), Charleston, SC, April 28-May 3, 2019, in: https://www.ans.org/pubs/proceedings/article-45687/.
  25. S.M. Shin, M. Porthin, T. Tyrvainen, C. Mueller, E. Piljugin, J. Stiller, R. Quatrain, J. Demgne, H. Brinkman, V. Natarajan, P. Picca, J. Gordon, J. Sedlak, M. Jaros, An international joint research to explore the method for Digital I&C reliability assessment: OECD/NEA DIGMAP, in: Asian Symposium on Risk Assessment and Management (ASRAM 2019), Online, September 30-October 2, 2019.
  26. M. Porthin, S.-M. Shin, M. Jaros, J. Sedlak, P. Picca, R. Quatrain, J. Demgne, H. Brinkman, V. Natarajan, T. Tyrvainen, C. Muller, E. Piljugin, WGRISK DIGMAP: Comparison of PSA modeling approaches for digital I&C, in: 12th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies (NPIC&HMIT 2021), Online, June 14-17, 2021. https://doi.org/10.13182/T124-35036.
  27. T. Aldemir, S. Guarro, J. Kirschenbaum, D. Mandelli, L.A. Mangan, P. Bucci, M. Yau, B. Johnson, C. Elks, E. Ekici, M.P. Stovsky, D.W. Miller, X. Sun, S.A. Arndt, Q. Nguyen, J. Dion, A Benchmark Implementation of Two Dynamic Methodologies for the Reliability Modeling of Digital Instrumentation and Control Systems, U.S. NRC, 2009. NUREG/CR-6985, https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6985/index.html.
  28. M. Tripathi, L.K. Singh, S. Singh, P. Singh, A comparative study on reliability analysis methods for safety critical systems using petri-nets and dynamic flowgraph methodology: a case study of nuclear power plant, IEEE Trans. Reliab. 71 (2022) 564-578, https://doi.org/10.1109/TR.2021.3109059.
  29. D.K. Shukla, A. John Arul, A review of recent dynamic reliability analysis methods and a proposal for a smart component methodology, in: Reliability, Safety and Hazard Assessment for Risk-Based Technologies, Singapore, 2020, https://doi.org/10.1007/978-981-13-9008-1_22.
  30. T. Aldemir, S. Guarro, D. Mandelli, J. Kirschenbaum, L.A. Mangan, P. Bucci, M. Yau, E. Ekici, D.W. Miller, X. Sun, S.A. Arndt, Probabilistic risk assessment modeling of digital instrumentation and control systems using two dynamic methodologies, Reliab. Eng. Syst. Saf. 95 (2010) 1011-1039, https://doi.org/10.1016/j.ress.2010.04.011.
  31. C.J. Garrett, S.B. Guarro, G.E. Apostolakis, The dynamic flowgraph methodology for assessing the dependability of embedded software systems, IEEE Trans. Syst. Man Cybern. 25 (1995) 824-840, https://doi.org/10.1109/21.376495.
  32. J. Yang, B. Zou, M. Yang, Bidirectional implementation of Markov/CCMT for dynamic reliability analysis with application to digital I&C systems, Reliab. Eng. Syst. Saf. 185 (2019) 278-290, https://doi.org/10.1016/j.ress.2018.12.024.
  33. R.B.N. Vital, P.F. Frutuoso e Melo, J.A.C.C. Medeiros, M.A.B. Alvarenga, Availability assessment of a nuclear reactor limitation system by a Timed Petri Net, Prog. Nucl. Energy 152 (2022), 104380, https://doi.org/10.1016/j.pnucene.2022.104380.
  34. T.-L. Chu, M. Yue, G. Martinez-Guridi, K. Mernick, J. Lehner, A. Kuritzky, Modeling a Digital Feedwater Control System Using Traditional Probabilistic Risk Assessment Methods, U.S.NRC, 2009. NUREG/CR-6997, https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6997/index.html.
  35. K.S. Son, S.H. Seong, H.G. Kang, G.S. Jang, Development of state-based integrated dependability model of RPS in NPPs considering CCF and periodic testing effects at the early design phase, Reliab. Eng. Syst. Saf. 193 (2020), 106645, https://doi.org/10.1016/j.ress.2019.106645.
  36. J.-E. Holmberg, DIGREL Example PSA Model Description, Risk Pilot, Stockholm, Sweden, 2016. Report 14127_R001.
  37. Y. Cai, Y. Wu, J. Zhou, M. Liu, Q. Zhang, Quantitative software reliability assessment methodology based on Bayesian belief networks and statistical testing for safety-critical software, Ann. Nucl. Energy 145 (2020), 107593, https://doi.org/10.1016/j.anucene.2020.107593.
  38. J. Seo, H.G. Kang, E.-C. Lee, S.J. Lee, Experimental approach to evaluate software reliability in hardware-software integrated environment, Nucl. Eng. Technol. 52 (2020) 1462-1470, https://doi.org/10.1016/j.net.2020.01.004.
  39. S. Authen, O. Backstrom, J.-E. Holmberg, M. Porthin, T. Tyrvainen, Modelling of DIgital I&C, MODIG - interim report 2015, Nordic Nuclear Safety Research, Roskilde, Denmark, 2016. NKS-361, https://www.nks.org/en/nks_reports/view_document.htm?id=111010213493819.
  40. EPRI, Modeling of Digital Instrumentation and Control in Nuclear Power Plant Probabilistic Risk Assessments, 2012, 1025278. Palo Alto, CA, USA, https://www.epri.com/research/products/1025278.
  41. M. Jockenhovel-Barttfeld, O. Backstrom, J.-E. Holmberg, M. Porthin, A. Taurines, T. Tyrvainen, Modelling software failures of digital I&C in probabilistic safety analyses, ATW - Int. J. Nucl. Power 60 (2015) 151-158. https://www.kernd.de/kernd-en/fachzeitschrift-atw/hefte-themen/2015/03_mar.php.
  42. H.G. Kang, S.H. Lee, S.J. Lee, T.-L. Chu, A. Varuttamaseni, M. Yue, S. Yang, H. S. Eom, J. Cho, M. Li, Development of a Bayesian belief network model for software reliability quantification of digital protection systems in nuclear power plants, Ann. Nucl. Energy 120 (2018) 62-73, https://doi.org/10.1016/j.anucene.2018.04.045.
  43. AREVA, AREVA Design Control Document Rev. 5 - Tier 2 Chapter 19 - Probabilistic Risk Assessment and Severe Accident Evaluation, U.S.NRC, 2013. ML13262A290, https://www.nrc.gov/docs/ML1326/ML13262A290.html.
  44. O. Backstrom, J.-E. Holmberg, M. Jockenhovel-Barttfeld, M. Porthin, A. Taurines, T. Tyrvainen, Software Reliability Analysis for PSA: Failure Mode and Data Analysis, Nordic Nuclear Safety Research, Roskilde, Denmark, 2015. NKS-341, https://www.nks.org/en/nks_reports/view_document.htm?id=111010213008953.
  45. IEC, Functional Safety of Electrical/electronic/programmable Electronic Safety-Related Systems - Part 6: Guidelines on the Application of IEC 61508-2 and IEC 61508-3, IEC 61508-6, 2010. https://webstore.iec.ch/publication/5520.
  46. M.C. Kim, J. Seo, W. Jung, J.G. Choi, H.G. Kang, S.J. Lee, Evaluation of effectiveness of fault-tolerant techniques in a digital instrumentation and control system with a fault injection experiment, Nucl. Eng. Technol. 51 (2019) 692-701, https://doi.org/10.1016/j.net.2018.11.012.