DOI QR코드

DOI QR Code

STABILITY OF BIFURCATING STATIONARY PERIODIC SOLUTIONS OF THE GENERALIZED SWIFT-HOHENBERG EQUATION

  • Soyeun, Jung (Division of International Studies Kongju National University)
  • 투고 : 2022.02.11
  • 심사 : 2022.05.04
  • 발행 : 2023.01.31

초록

Applying the Lyapunov-Schmidt reduction, we consider spectral stability of small amplitude stationary periodic solutions bifurcating from an equilibrium of the generalized Swift-Hohenberg equation. We follow the mathematical framework developed in [15, 16, 19, 23] to construct such periodic solutions and to determine regions in the parameter space for which they are stable by investigating the movement of the spectrum near zero as parameters vary.

키워드

과제정보

This work was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2022R1F1A1074414).

참고문헌

  1. D. Avitabile, D. J. B. Lloyd, J. Burke, E. Knobloch, and B. Sandstede, To snake or not to snake in the planar Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst. 9 (2010), no. 3, 704-733. https://doi.org/10.1137/100782747 
  2. J. Burke and E. Knobloch, Localized states in the generalized Swift-Hohenberg equation, Phys. Rev. E (3) 73 (2006), no. 5, 056211, 15 pp. https://doi.org/10.1103/PhysRevE.73.056211 
  3. P. Chossat and G. Faye, Pattern formation for the Swift-Hohenberg equation on the hyperbolic plane, J. Dynam. Differential Equations 27 (2015), no. 3-4, 485-531. https://doi.org/10.1007/s10884-013-9308-3 
  4. P. Collet and J.-P. Eckmann, Instabilities and Fronts in Extended Systems, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1990. https://doi.org/10.1515/9781400861026 
  5. A. Doelman, B. Sandstede, A. Scheel, and G. Schneider, The dynamics of modulated wave trains, Mem. Amer. Math. Soc. 199 (2009), no. 934, viii+105 pp. https://doi.org/10.1090/memo/0934 
  6. W. Eckhaus, Studies in non-linear stability theory, Springer Tracts in Natural Philosophy, Vol. 6, Springer-Verlag New York, Inc., New York, 1965. 
  7. P. Gandhi, C. Beaume, and E. Knobloch, A new resonance mechanism in the Swift-Hohenberg equation with time-periodic forcing, SIAM J. Appl. Dyn. Syst. 14 (2015), no. 2, 860-892. https://doi.org/10.1137/14099468X 
  8. M'F. Hilali, S. Metens, P. Borckmans, and G. Dewel, Pattern selection in the generalized Swift-hohenberg model, Phys. Rev. E 51 (1995), no 3. 
  9. M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun, Nonlocalized modulation of periodic reaction diffusion waves: the Whitham equation, Arch. Ration. Mech. Anal. 207 (2013), no. 2, 669-692. https://doi.org/10.1007/s00205-012-0572-x 
  10. M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun, Nonlocalized modulation of periodic reaction diffusion waves: nonlinear stability, Arch. Ration. Mech. Anal. 207 (2013), no. 2, 693-715. https://doi.org/10.1007/s00205-012-0573-9 
  11. M. A. Johnson and K. Zumbrun, Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction-diffusion equations, Ann. Inst. H. Poincar'e C Anal. Non Lineaire 28 (2011), no. 4, 471-483. https://doi.org/10.1016/j.anihpc.2011.05.003 
  12. Y. Kagei and W. von Wahl, The Eckhaus criterion for convection roll solutions of the Oberbeck-Boussinesq equations, Internat. J. Non-Linear Mech. 32 (1997), no. 3, 563-620. https://doi.org/10.1016/S0020-7462(97)88306-0 
  13. T. Kapitula and K. Promislow, Spectral and dynamical stability of nonlinear waves, Applied Mathematical Sciences, 185, Springer, New York, 2013. https://doi.org/10.1007/978-1-4614-6995-7 
  14. D. J. B. Lloyd and A. Scheel, Continuation and bifurcation of grain boundaries in the Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst. 16 (2017), no. 1, 252-293. https://doi.org/10.1137/16M1073212 
  15. A. Mielke, A new approach to sideband-instabilities using the principle of reduced instability, in Nonlinear dynamics and pattern formation in the natural environment (Noordwijkerhout, 1994), 206-222, Pitman Res. Notes Math. Ser., 335, Longman, Harlow, 1995. 
  16. A. Mielke, Instability and stability of rolls in the Swift-Hohenberg equation, Comm. Math. Phys. 189 (1997), no. 3, 829-853. https://doi.org/10.1007/s002200050230 
  17. A. Mielke, The Ginzburg-Landau equation in its role as a modulation equation, in Handbook of dynamical systems, Vol. 2, 759-834, North-Holland, Amsterdam, 2002. https://doi.org/10.1016/S1874-575X(02)80036-4 
  18. B. Sandstede, A. Scheel, G. Schneider, and H. Uecker, Diffusive mixing of periodic wave trains in reaction-diffusion systems, J. Differential Equations 252 (2012), no. 5, 3541-3574. https://doi.org/10.1016/j.jde.2011.10.014 
  19. G. Schneider, Diffusive stability of spatial periodic solutions of the Swift-Hohenberg equation, Comm. Math. Phys. 178 (1996), no. 3, 679-702. http://projecteuclid.org/euclid.cmp/1104286771  104286771
  20. G. Schneider, Nonlinear diffusive stability of spatially periodic solutions-abstract theorem and higher space dimensions, in Proceedings of the International Conference on Asymptotics in Nonlinear Diffusive Systems (Sendai, 1997), 159-167, Tohoku Math. Publ., 8, Tohoku Univ., Sendai, 1998. 
  21. G. Schneider and H. Uecker, Nonlinear PDEs, Graduate Studies in Mathematics, 182, American Mathematical Society, Providence, RI, 2017. https://doi.org/10.1090/gsm/182 
  22. P. Subramanian, A. J. Archer, E. Knobloch, and A. M. Rucklidge, Snaking without subcriticality: grain boundaries as non-topological defects, IMA J. Appl. Math. 86 (2021), no. 5, 1164-1180. https://doi.org/10.1093/imamat/hxab032 
  23. A. Sukhtayev, K. Zumbrun, S. Jung, and R. Venkatraman, Diffusive stability of spatially periodic solutions of the Brusselator model, Comm. Math. Phys. 358 (2018), no. 1, 1-43. https://doi.org/10.1007/s00220-017-3056-x 
  24. L. S. Tuckerman and D. Barkley, Bifurcation analysis of the Eckhaus instability, Phys. D 46 (1990), no. 1, 57-86. https://doi.org/10.1016/0167-2789(90)90113-4