DOI QR코드

DOI QR Code

CROSS-INTERCALATES AND GEOMETRY OF SHORT EXTREME POINTS IN THE LATIN POLYTOPE OF DEGREE 3

  • Bokhee Im (Department of Mathematics Chonnam National University) ;
  • Jonathan D. H. Smith (Department of Mathematics Iowa State University)
  • 투고 : 2022.04.15
  • 심사 : 2022.10.27
  • 발행 : 2023.01.01

초록

The polytope of tristochastic tensors of degree three, the Latin polytope, has two kinds of extreme points. Those that are at a maximum distance from the barycenter of the polytope correspond to Latin squares. The remaining extreme points are said to be short. The aim of the paper is to determine the geometry of these short extreme points, as they relate to the Latin squares. The paper adapts the Latin square notion of an intercalate to yield the new concept of a cross-intercalate between two Latin squares. Cross-intercalates of pairs of orthogonal Latin squares of degree three are used to produce the short extreme points of the degree three Latin polytope. The pairs of orthogonal Latin squares fall into two classes, described as parallel and reversed, each forming an orbit under the isotopy group. In the inverse direction, we show that each short extreme point of the Latin polytope determines four pairs of orthogonal Latin squares, two parallel and two reversed.

키워드

과제정보

We are grateful to the referee for their careful reading and comments.

참고문헌

  1. G. Birkhoff, Three observations on linear algebra, Univ. Nac. Tucuman. Revista A. 5 (1946), 147-151.
  2. M. Bona, Sur l'enumeration des cubes magiques, C. R. Acad. Sci. Paris Ser. I Math. 316 (1993), no. 7, 633-636.
  3. L.-B. Cui, W. Li, and M. K. Ng, Birkhoff-von Neumann theorem for multistochastic tensors, SIAM J. Matrix Anal. Appl. 35 (2014), no. 3, 956-973. https://doi.org/10.1137/120896499
  4. P. Fischer and E. R. Swart, Three-dimensional line stochastic matrices and extreme points, Linear Algebra Appl. 69 (1985), 179-203. https://doi.org/10.1016/0024-3795(85)90075-8
  5. K. Heinrich and W. D. Wallis, The maximum number of intercalates in a Latin square, in Combinatorial mathematics, VIII (Geelong, 1980), 221-233, Lecture Notes in Math., 884, Springer, Berlin, 1981.
  6. B. Im, J.-Y. Ryu, and J. D. H. Smith, Sharply transitive sets in quasigroup actions, J. Algebraic Combin. 33 (2011), no. 1, 81-93. https://doi.org/10.1007/s10801-010-0234-8
  7. B. Im and J. D. H. Smith, Orthogonality of approximate Latin squares and quasigroups, in Nonassociative mathematics and its applications, 165-181, Contemp. Math., 721, Amer. Math. Soc., RI, 2019. https://doi.org/10.1090/conm/721/14504
  8. B. Im and J. D. H. Smith, Homogeneous conditions for stochastic tensors, Commun. Korean Math. Soc. 37 (2022), no. 2, 371-384. https://doi.org/10.4134/CKMS.c210127
  9. W. B. Jurkat and H. J. Ryser, Extremal configurations and decomposition theorems. I, J. Algebra 8 (1968), 194-222. https://doi.org/10.1016/0021-8693(68)90045-8
  10. R. Ke, W. Li, and M. Xiao, Characterization of extreme points of multi-stochastic tensors, Comput. Methods Appl. Math. 16 (2016), no. 3, 459-474. https://doi.org/10.1515/cmam-2016-0005
  11. H.-Y. Lee, B. Im, and J. D. H. Smith, Stochastic tensors and approximate symmetry, Discrete Math. 340 (2017), no. 6, 1335-1350. https://doi.org/10.1016/j.disc.2017. 02.013
  12. N. Linial and Z. Luria, On the vertices of the d-dimensional Birkhoff polytope, Discrete Comput. Geom. 51 (2014), no. 1, 161-170. https://doi.org/10.1007/s00454-013-9554-5
  13. B. D. McKay and I. M. Wanless, Most Latin squares have many subsquares, J. Combin. Theory Ser. A 86 (1999), no. 2, 322-347. https://doi.org/10.1006/jcta.1998.2947
  14. H. W. Norton, The 7 × 7 squares, Ann. Eugenics 9 (1939), 269-307. https://doi.org/10.1111/j.1469-1809.1939.tb02214.x
  15. J. Y. Shao and W. D. Wei, A formula for the number of Latin squares, Discrete Math. 110 (1992), no. 1-3, 293-296. https://doi.org/10.1016/0012-365X(92)90722-R
  16. J. D. H. Smith, An Introduction to Quasigroups and Their Representations, Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2007.
  17. J. D. H. Smith, Introduction to Abstract Algebra, second edition, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2016.