DOI QR코드

DOI QR Code

Lifetime-based fault tolerant strategy for three-level hybrid ANPC inverters

  • Jun‑Ho Hwang (Department of Electrical and Computer Engineering, Ajou University) ;
  • Laith M. Halabi (Department of Electrical and Computer Engineering, Ajou University) ;
  • Youngjong Ko (Department of Electrical Engineering and Industry 4.0 Convergence Bionics Engineering, Pukyong National University) ;
  • Kyo‑Beum Lee (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2022.06.07
  • Accepted : 2022.10.30
  • Published : 2023.02.20

Abstract

This paper presents a fault tolerant control that aims at improving the reliability of three-level hybrid ANPC inverters. Since the hybrid ANPC inverter consists of Si devices and SiC devices have a higher output quality and lower power losses, it has been considered in various power conversion industries. However, there still are concerns over its reliability since employing many power devices increased the risk of failure. Furthermore, the inverter is composed of a switching device and a DC-link capacitor, which mainly determine the reliability of the system. As one of the strategies to improve reliability, fault tolerant control methods have been intensively studied. However, applying the fault tolerant control increases the power losses of the switching device or the DC-link capacitor, which leads to earlier second failures. This paper proposes a lifetime-based fault tolerant strategy considering the remaining useful lifetime of the power device and DC-link capacitor, which increases the lifetime of the whole system. The validity and effectiveness of the proposed fault tolerant control method are verified through simulation and experimental results.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1G1A1100406) and by Korea Electric Power Corporation (Grant number: R21XO01-11).

References

  1. Lee, K.-B. (2019) Advanced Power Electronics, munundang
  2. Franquelo, L., Rodriguez, J., Leon, J., Kouro, S., Poerillo, R., Prats, M.: The age of multilevel converters arrives. IEEE Trans. Ind. Electron. 2(2), 28-39 (2008)
  3. Lee, K.-B., Lee, J.-S.: Reliability improvement technology for power converters. Springer, Singapore (2017)
  4. Yuan, Q., Qian, J., Li, A.: A simplified common-mode voltage suppression and neutral-point potential control for the NPC three-level inverter. J. Electr. Eng. Technol. 14, 2389-2398 (2019) https://doi.org/10.1007/s42835-019-00293-9
  5. Lee, J.-P., Min, B.-D., Yoo, D.-W.: Implementation of a high effciency grid-tied multi-level photovoltaic power conditioning system using phase shifted H-Bridge Modules. J. Power Electron. 13(2), 296-303 (2013)
  6. Rodrigues, J., Bernet, S., Steimer, P.K., Lizama, I.E.: A survey on neutral-point-clamped inverters. IEEE Trans Ind. Electron. 57(7), 2219-2230 (2010) https://doi.org/10.1109/TIE.2009.2032430
  7. Pham, K.D., Nguyen, N.V.: Pulse-width modulation strategy for common mode voltage elimination with reduced common mode voltage spikes in multilievel inverters with extension to overmodulation mode. J. Power Electron. 19(3), 727-743 (2019) https://doi.org/10.6113/JPE.2019.19.3.727
  8. Ku, N.-J., Kim, R.-Y., Hyun, D.-S.: Partial O-state clamping PWM method for three-level NPC inverter with a SiC clamp diode. J. Electr. Eng. Technol. 10(3), 1066-1074 (2015) https://doi.org/10.5370/JEET.2015.10.3.1066
  9. Song, M.-K., Kim, S.-M., Lee, K.-B.: Independent switching technique to remove abnormal output voltage in hybrid active NPC inverters. J. Power Electron. 21(1), 86-93 (2021) https://doi.org/10.1007/s43236-020-00170-z
  10. Jo, H.-R., Kim, Y.-J., Lee, K.-B.: LCL-filter based on modulation index for grid-connection three-level hybrid ANPC inverters. J. Electr. Eng. Technol. 16(3), 1517-1525 (2021) https://doi.org/10.1007/s42835-021-00703-x
  11. Zhang, L., Zheng, Z., Li, C., Ju, P., Wu, F., Gu, Y., Chen, G.: A Si/SiC hybrid five-level active NPC inverter with improved modulation scheme. IEEE Trans. Power Electron. 35(5), 4835-4846 (2020) https://doi.org/10.1109/tpel.2019.2944688
  12. Xu, S.-Z., Wang, C.-J., Wang, Y.: An improved fault-tolerant control strategy for high-power ANPC three-level inverter under short-circuit fault of power devices. IEEE Access 7, 55443-55457 (2019) https://doi.org/10.1109/access.2019.2913594
  13. Li, C., Wang, G., Li, H., Xia, Z., Liu, Z.: Fault-tolerant control for 5L-HNPC inverter-fed induction motor drives with finite control set model predictive control based on hierarchical optimization. J. Power Electron. 19(4), 989-999 (2019) https://doi.org/10.6113/JPE.2019.19.4.989
  14. Halabi, L.M., Alsofyani, I.M., Lee, K.-B.: Hardware implementation for hybrid active NPC converters using FPGA-based dual pulse width modulation. J. Power Electron. 21(11), 1669-1679 (2021) https://doi.org/10.1007/s43236-021-00305-w
  15. Halabi, L.M., Alsofyani, I.M., Lee, K.-B.: Multiple-fault-tolerant strategy for three-phase hybrid active neutral point clamped converters using enhanced space vector modulation technique. IEEE Access 8, 180113-180123 (2020) https://doi.org/10.1109/access.2020.3028115
  16. Haleem, N.M., Rajapakse, A.D., Gole, A.M.: Improved circuit model for simulating IGBT switching transients in VSCs. J. Power Electron. 18(6), 1901-1911 (2018)
  17. Jo, H.-R., Ko, Y. J., Lee, K.-B.: Influence of open switch failure on normal devices in HANPC inverters. in Proc. ICEMS Conf. 506-509 (2021)
  18. Liu, Y., Song, Z., Peng, J., Jiang, H.: Analytical and experimental validation of parasitic components influence in SiC MOSFET three-phase grid-connected inverter. J. Power Electron. 19(2), 591-601 (2019) https://doi.org/10.6113/JPE.2019.19.2.591
  19. Infineon Technology: AN2010-02 Use of power cycling, 2010
  20. K, Mainka., M, Thoben., O. Schilling.: Lifetime calculation for power modules, application and theory of models and counting methods. Proceedings of the 2011 14th European Conference on Power Electronics and Applications, 2011. pp. 1-8.
  21. Infineon Technology: AN2019-05 PC and TC diagrams, 2019
  22. Lee, K.-W., Kim, M., Yoon, J., Yoo, J.-B.: Condition monitoring of dc-link electrolytic capacitors in adjustable-speed drives. IEEE Trans. Ind. Appl. 44(5), 1606-1613 (2008) https://doi.org/10.1109/TIA.2008.2002220
  23. Kim, Y.J., Kim, S.-M., Lee, K.-B.: Improving dc-link capacitor lifetime for three-Level photovoltaic hybrid active NPC Inverters in full modulation index range. IEEE Trans. Power Electron. 36(5), 5250-5261 (2021) https://doi.org/10.1109/TPEL.2020.3027670
  24. Gektin, V., Bar-Cohen, A., Ames, J.: Coffin-Manson fatigue model of underfilled flip-chips. IEEE Trans. Comp Packag. Manuf. Technol. A. 20:317-326 (1997) https://doi.org/10.1109/95.623026
  25. Yan, G., Duan, S., Zhao, S., Li, G., Wu, W., Li, H.: Research on the mechanism of neutral-point voltage fluctuation and capacitor voltage balancing control strategy of three-phase three-level T-type inverter. J. Electr. Eng. Technol. 12(6), 2227-2236 (2017) https://doi.org/10.5370/JEET.2017.12.6.2227
  26. Sangwongwanich, A., Yang, Y., Sera, D., Blaabjerg, F.: Lifetime evaluation of grid- connection PV inverters considering panel degradation rates and installation sites. IEEE Trans. Power Electron. 33(2), 1225-1236 (2018) https://doi.org/10.1109/TPEL.2017.2678169
  27. Huang, H., Mawby, P.A.: A lifetime estimation technique for voltage source inverters. IEEE Trans. Power Electron. 28(8), 4113-4119 (2013) https://doi.org/10.1109/TPEL.2012.2229472
  28. Gaeid, K.S., Maher, R.A., Lazim, A.J.: Multilevel inverter faulttolerant control with wavelet index in induction motor. J. Electr. Eng. Technol. 14(3), 1179-1191 (2019) https://doi.org/10.1007/s42835-019-00086-0
  29. Jo, H.-R., Ko, Y. J., Lee, K.-B.: Open fault tolerant method using DPWM for reducing switching loss in three-level hybrid ANPC inverter. IEEE Conf. Energy Convers. (CENCON), 80-84 (2021)
  30. Li, T., Chen, J., Dai, X., Qiu, R., Liu, Z.: Online condition monitoring of dc-link capacitor for AC/DC/AC PWM converter. IEEE Trans. Power Electron. 37(1), 865-878 (2022) https://doi.org/10.1109/TPEL.2021.3092429