DOI QR코드

DOI QR Code

CD4+ cytotoxic T cells: an emerging effector arm of anti-tumor immunity

  • Seongmin Jeong (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Nawon Jang (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Minchae Kim (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Il-Kyu Choi (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • Received : 2023.01.03
  • Accepted : 2023.02.26
  • Published : 2023.03.31

Abstract

While CD8+ cytotoxic T cells have long been considered the primary effector in controlling tumors, the involvement of CD4+ "helper" T cells in anti-tumor immunity has been underappreciated. The investigations of intra-tumoral T cells, fueled by the recent advances in genomic technologies, have led to a rethinking of the indirect role of CD4+ T cells that have traditionally been described as a "helper". Accumulating evidence from preclinical and clinical studies indicates that CD4+ T cells can acquire intrinsic cytotoxic properties and directly kill various types of tumor cells in a major histocompatibility complex class II (MHC-II)-dependent manner, as opposed to the indirect "helper" function, thus underscoring a potentially critical contribution of CD4+ cytotoxic T cells to immune responses against a wide range of tumor types. Here, we discuss the biological properties of anti-tumor CD4+ T cells with cytotoxic capability and highlight the emerging observations suggesting their more significant role in anti-tumor immunity than previously appreciated.

Keywords

Acknowledgement

This work was supported by grants from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (grant no. NRF-2022R1A2C109214511 to I.-K.C.) and the DGIST Start-up Fund Program of the Ministry of Science and ICT (grant no. 2023010020 to I.-K.C.).

References

  1. Zhou L, Chong MM and Littman DR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646-655  https://doi.org/10.1016/j.immuni.2009.05.001
  2. Zhu J, Yamane H and Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28, 445-489  https://doi.org/10.1146/annurev-immunol-030409-101212
  3. Zappasodi R, Merghoub T and Wolchok JD (2018) Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell 33, 581-598  https://doi.org/10.1016/j.ccell.2018.03.005
  4. Barrett DM, Singh N, Porter DL, Grupp SA and June CH (2014) Chimeric antigen receptor therapy for cancer. Annu Rev Med 65, 333-347  https://doi.org/10.1146/annurev-med-060512-150254
  5. Ott PA, Hodi FS, Kaufman HL, Wigginton JM and Wolchok JD (2017) Combination immunotherapy: a road map. J Immunother Cancer 5, 16 
  6. Johnson DB, Estrada MV, Salgado R et al (2016) Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun 7, 10582 
  7. Rodig SJ, Gusenleitner D, Jackson DG et al (2018) MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci Transl Med 10, eaar3342 
  8. Johnson DB, Bordeaux J, Kim JY et al (2018) Quantitative spatial profiling of PD-1/PD-L1 interaction and HLA-DR/IDO-1 predicts improved outcomes of anti-PD-1 therapies in metastatic melanoma. Clin Cancer Res 24, 5250-5260  https://doi.org/10.1158/1078-0432.CCR-18-0309
  9. Park IA, Hwang SH, Song IH et al (2017) Expression of the MHC class II in triple-negative breast cancer is associated with tumor-infiltrating lymphocytes and interferon signaling. PLoS One 12, e0182786 
  10. Loi S, Dushyanthen S, Beavis PA et al (2016) RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res 22, 1499-1509  https://doi.org/10.1158/1078-0432.CCR-15-1125
  11. Michel S, Linnebacher M, Alcaniz J et al (2010) Lack of HLA class II antigen expression in microsatellite unstable colorectal carcinomas is caused by mutations in HLA class II regulatory genes. Int J Cancer 127, 889-898  https://doi.org/10.1002/ijc.25106
  12. Bustin SA, Li SR, Phillips S and Dorudi S (2001) Expression of HLA class II in colorectal cancer: evidence for enhanced immunogenicity of microsatellite-instability-positive tumours. Tumour Biol 22, 294-298  https://doi.org/10.1159/000050630
  13. Callahan MJ, Nagymanyoki Z, Bonome T et al (2008) Increased HLA-DMB expression in the tumor epithelium is associated with increased CTL infiltration and improved prognosis in advanced-stage serous ovarian cancer. Clin Cancer Res 14, 7667-7673  https://doi.org/10.1158/1078-0432.ccr-08-0479
  14. Turner TB, Meza-Perez S, Londono A et al (2017) Epigenetic modifiers upregulate MHC II and impede ovarian cancer tumor growth. Oncotarget 8, 44159-44170  https://doi.org/10.18632/oncotarget.17395
  15. Younger AR, Amria S, Jeffrey WA et al (2008) HLA class II antigen presentation by prostate cancer cells. Prostate Cancer Prostatic Dis 11, 334-341  https://doi.org/10.1038/sj.pcan.4501021
  16. Roemer MGM, Redd RA, Cader FZ et al (2018) Major histocompatibility complex class ii and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic hodgkin lymphoma. J Clin Oncol 36, 942-950  https://doi.org/10.1200/JCO.2017.77.3994
  17. Soos JM, Krieger JI, Stuve O et al (2001) Malignant glioma cells use MHC class II transactivator (CIITA) promoters III and IV to direct IFN-gamma-inducible CIITA expression and can function as nonprofessional antigen presenting cells in endocytic processing and CD4(+) T-cell activation. Glia 36, 391-405  https://doi.org/10.1002/glia.1125
  18. Yazawa T, Kamma H, Fujiwara M et al (1999) Lack of class II transactivator causes severe deficiency of HLA-DR expression in small cell lung cancer. J Pathol 187, 191-199  https://doi.org/10.1002/(SICI)1096-9896(199901)187:2<191::AID-PATH206>3.0.CO;2-3
  19. Quezada SA, Simpson TR, Peggs KS et al (2010) Tumorreactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 207, 637-650  https://doi.org/10.1084/jem.20091918
  20. Xie Y, Akpinarli A, Maris C et al (2010) Naive tumorspecific CD4(+) T cells differentiated in vivo eradicate established melanoma. J Exp Med 207, 651-667  https://doi.org/10.1084/jem.20091921
  21. Hirschhorn-Cymerman D, Budhu S, Kitano S et al (2012) Induction of tumoricidal function in CD4+ T cells is associated with concomitant memory and terminally differentiated phenotype. J Exp Med 209, 2113-2126  https://doi.org/10.1084/jem.20120532
  22. Curran MA, Geiger TL, Montalvo W et al (2013) Systemic 4-1BB activation induces a novel T cell phenotype driven by high expression of Eomesodermin. J Exp Med 210, 743-755  https://doi.org/10.1084/jem.20121190
  23. Kitano S, Tsuji T, Liu C et al (2013) Enhancement of tumor-reactive cytotoxic CD4+ T cell responses after ipilimumab treatment in four advanced melanoma patients. Cancer Immunol Res 1, 235-244  https://doi.org/10.1158/2326-6066.CIR-13-0068
  24. Puram SV, Tirosh I, Parikh AS et al (2017) Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611-1624 e1624 
  25. Azizi E, Carr AJ, Plitas G et al (2018) Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293-1308 e1236 
  26. Zhang Y, Chen H, Mo H et al (2021) Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578-1593 e1578 
  27. Guo X, Zhang Y, Zheng L et al (2018) Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med 24, 978-985  https://doi.org/10.1038/s41591-018-0045-3
  28. Zhang L, Yu X, Zheng L et al (2018) Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268-272  https://doi.org/10.1038/s41586-018-0694-x
  29. Zhang Q, He Y, Luo N et al (2019) Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829-845 e820 
  30. Zheng C, Zheng L, Yoo JK et al (2017) Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342-1356 e1316 
  31. Oh DY, Kwek SS, Raju SS et al (2020) Intratumoral CD4(+) T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 181, 1612-1625 e1613 
  32. Tang XX, Shimada H and Ikegaki N (2021) Clinical relevance of CD4 cytotoxic T cells in high-risk neuroblastoma. Front Immunol 12, 650427 
  33. Zhou Y, Yang D, Yang Q et al (2020) Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat Commun 11, 6322 
  34. Porakishvili N, Kardava L, Jewell AP et al (2004) Cytotoxic CD4+ T cells in patients with B cell chronic lymphocytic leukemia kill via a perforin-mediated pathway. Haematologica 89, 435-443 
  35. Khanna R, Burrows SR, Thomson SA et al (1997) Class I processing-defective Burkitt's lymphoma cells are recognized efficiently by CD4+ EBV-specific CTLs. J Immunol 158, 3619-3625  https://doi.org/10.4049/jimmunol.158.8.3619
  36. Cader FZ, Hu X, Goh WL et al (2020) A peripheral immune signature of responsiveness to PD-1 blockade in patients with classical Hodgkin lymphoma. Nat Med 26, 1468-1479  https://doi.org/10.1038/s41591-020-1006-1
  37. Cachot A, Bilous M, Liu YC et al (2021) Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Sci Adv 7, eabe3348 
  38. Hu Z, Leet DE, Allesoe RL et al (2021) Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat Med 27, 515-525  https://doi.org/10.1038/s41591-020-01206-4
  39. Melenhorst JJ, Chen GM, Wang M et al (2022) Decadelong leukaemia remissions with persistence of CD4(+) CAR T cells. Nature 602, 503-509  https://doi.org/10.1038/s41586-021-04390-6
  40. Choi IK, Wang Z, Ke Q et al (2018) Signaling by the Epstein-Barr virus LMP1 protein induces potent cytotoxic CD4(+) and CD8(+) T cell responses. Proc Natl Acad Sci U S A 115, E686-E695  https://doi.org/10.1073/pnas.1713607115
  41. Choi IK, Wang Z, Ke Q et al (2021) Mechanism of EBV inducing anti-tumour immunity and its therapeutic use. Nature 590, 157-162  https://doi.org/10.1038/s41586-020-03075-w
  42. Sledzinska A, Vila de Mucha M, Bergerhoff K et al (2020) Regulatory T cells restrain interleukin-2- and blimp-1-dependent acquisition of cytotoxic function by CD4(+) T cells. Immunity 52, 151-166 e156 
  43. Takeuchi A, Badr Mel S, Miyauchi K et al (2016) CRTAM determines the CD4+ cytotoxic T lymphocyte lineage. J Exp Med 213, 123-138  https://doi.org/10.1084/jem.20150519
  44. Brown DM, Kamperschroer C, Dilzer AM, Roberts DM and Swain SL (2009) IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells. Cell Immunol 257, 69-79  https://doi.org/10.1016/j.cellimm.2009.03.002
  45. Cruz-Guilloty F, Pipkin ME, Djuretic IM et al (2009) Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J Exp Med 206, 51-59  https://doi.org/10.1084/jem.20081242
  46. Serroukh Y, Gu-Trantien C, Hooshiar Kashani B et al (2018) The transcription factors Runx3 and ThPOK crossregulate acquisition of cytotoxic function by human Th1 lymphocytes. Elife 7, e30496 
  47. Lancki DW, Hsieh CS and Fitch FW (1991) Mechanisms of lysis by cytotoxic T lymphocyte clones. Lytic activity and gene expression in cloned antigen-specific CD4+ and CD8+ T lymphocytes. J Immunol 146, 3242-3249  https://doi.org/10.4049/jimmunol.146.9.3242
  48. Akhmetzyanova I, Zelinskyy G, Littwitz-Salomon E et al (2016) CD137 agonist therapy can reprogram regulatory T cells into cytotoxic CD4+ T cells with antitumor activity. J Immunol 196, 484-492  https://doi.org/10.4049/jimmunol.1403039
  49. Appay V, Zaunders JJ, Papagno L et al (2002) Characterization of CD4(+) CTLs ex vivo. J Immunol 168, 5954-5958  https://doi.org/10.4049/jimmunol.168.11.5954
  50. Takeuchi A and Saito T (2017) CD4 CTL, a cytotoxic subset of CD4(+) T cells, their differentiation and function. Front Immunol 8, 194 
  51. Waight JD, Chand D, Dietrich S et al (2018) Selective fcgammar co-engagement on APCs modulates the activity of therapeutic antibodies targeting T cell antigens. Cancer Cell 33, 1033-1047 e1035 
  52. Braumuller H, Wieder T, Brenner E et al (2013) T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361-365  https://doi.org/10.1038/nature11824
  53. Kammertoens T, Friese C, Arina A et al (2017) Tumour ischaemia by interferon-gamma resembles physiological blood vessel regression. Nature 545, 98-102  https://doi.org/10.1038/nature22311
  54. Corthay A, Skovseth DK, Lundin KU et al (2005) Primary antitumor immune response mediated by CD4+ T cells. Immunity 22, 371-383  https://doi.org/10.1016/j.immuni.2005.02.003
  55. Kennedy R and Celis E (2008) Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev 222, 129-144  https://doi.org/10.1111/j.1600-065X.2008.00616.x
  56. Haabeth OAW, Hennig K, Fauskanger M, Loset GA, Bogen B and Tveita A (2020) CD4+ T-cell killing of multiple myeloma cells is mediated by resident bone marrow macrophages. Blood Adv 4, 2595-2605  https://doi.org/10.1182/bloodadvances.2020001434
  57. Steimle V, Siegrist CA, Mottet A, Lisowska-Grospierre B and Mach B (1994) Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science 265, 106-109  https://doi.org/10.1126/science.8016643
  58. Neefjes J, Jongsma ML, Paul P and Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11, 823-836 https://doi.org/10.1038/nri3084