DOI QR코드

DOI QR Code

Study on Generation Volume of Floating Solar Power Using Historical Insolation Data

과거 일사량 자료를 활용한 수상태양광 발전량 예측 연구

  • 나혜지 (원광대학교 건설환경공학과) ;
  • 김경석 (원광대학교 건설환경공학과)
  • Received : 2022.11.16
  • Accepted : 2023.02.27
  • Published : 2023.04.01

Abstract

Solar power has the largest proportion of power generation and facility capacity among renewable energy in South Korea. Floating solar power plant is a new way to resolve weakness of land solar power plant. This study analyzes the power generation of the 18.7 MW floating solar power project located in Saemangeum, Gunsan-si. Since the solar power generation has a characteristic that is greatly affected by the climate, various methods have been applied to predict solar power generation. In general, variables necessary for predicting power generation are solar insolation on inclined surfaces, solar generation efficiency, and panel installation area. This study analyzed solar power generation using the monthly solar insolation data from the KMA (Korea Meteorological Administration) over the past 10 years. Monte Carlo simulation (MCS) was applied to predict the solar power generation with the variables including solar panel efficiency and insolation. In the case of Saemangeum solar power project, the most solar power generation was in May, the least was in December, the average solar power generation simulated on MCS is 2.1 GWh per month, the minimum monthly power generation is 0.3 GWh, and the maximum is 5.0 GWh.

태양광발전은 현재 국내 신재생에너지 중 발전량과 설비용량 비중이 가장 크다. 수상태양광은 국내의 육상태양광 발전시설의 여러 가지 단점을 보완한 방식이다. 본 연구는 군산 새만금에 위치한 18.7 MW 시설용량의 수상태양광발전소를 대상으로 발전량을 분석하고자 한다. 기후의 영 향을 많이 받는 태양광발전사업의 특성으로 타당성을 확인하고자 관련 연구자들은 태양광 발전량 예측에 많은 기법들을 적용하였다. 일반적으로 발전량 예측에 필요한 변수들은 사업대상 지역의 경사면 일사량, 발전효율, 패널 설치 면적 등이다. 본 연구는 기상청 과거 10년간의 월 일사량 데이터를 활용하여 태양광 발전량을 분석하였다. 발전량을 예측하기 위해서 몬테카를로 시뮬레이션 기법을 적용하였으며, 태양광 패널의 발전효율과 일사량을 시뮬레이션의 변수들로 사용하였다. 새만금 태양광의 경우, 가장 태양광 발전량이 많은 달은 5월이며, 가장 적은 달은 12월로 예측되었으며, 발전량은 월평균 2.1 GWh이고, 최소 월 발전량은 0.3 GWh, 최대는 5.0 GWh로 분석되었다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 지원을 받아 수행된 과제입니다 (NRF-2019R1C1C1010332).

References

  1. Ahn, C. M., Joo, J. C., Kim, J. H., Choi, S. H., Jang, J. S. and Go, H. W. (2021). "Review of installation status and major environmental issues of floating photovoltaic power plants (FPVs)." Journal of Korean Society of Environmental Engineers, Vol. 43, No. 4, pp. 286-298 (in Korean). https://doi.org/10.4491/KSEE.2021.43.4.286
  2. Al-Sumaiti, A. S., Ahmed, M. H., Rivera, S., El Moursi, M. S., Salama, M. M. A. and Alsumaiti, T. (2019). "Stochastic PV model for power system planning applications." IET Renewable Power Generation, Vol. 13, No. 16, pp. 3168-3179. DOI: https://doi.org/10.1049/iet-rpg.2019.0345
  3. Choi, H. C. (2014). An empirical study for operating characteristics analysis of 100 (kW) floated photovoltaic system, Master's Dissertation, Hanyang University (in Korean).
  4. Dolatabadi, A. and Mohammadi-ivatloo, B. (2018). "stochastic risk-constrained optimal sizing for hybrid power system of merchant marine vessels." IEEE Transactions on Industrial Informatics, Vol. 14, No. 12, pp. 5509-5517. https://doi.org/10.1109/TII.2018.2824811
  5. Gastli, A. and Charabi, Y. (2010). "Solar electricity prospects in Oman using GIS-based solar radiation maps." Renewable and Sustainable Energy Reviews, Vol. 14, No. 2, pp. 790-797. https://doi.org/10.1016/j.rser.2009.08.018
  6. Jenkins, N. and Ekanayake, J. (2017). Renewable energy engineering, Cambridge University Press, Cambridge, UK. DOI: 10.1017/9781139236256
  7. Jeon, W. Y., Cho, S. M. and Cho, I. H. (2019). "Estimating the uncertainty of net load of 2030 renewable generation." New & Renewable Energy, Vol. 15, No. 4, pp. 28-38 (in Korean). https://doi.org/10.7849/ksnre.2019.12.15.4.028
  8. Jeong, J. H. and Chae, Y. T. (2018). "Improvement for forecasting of photovoltaic power output using real time weather data based on machine learning." Journal of The Korean Society of Living Environmental System, Vol. 25, No. 1, pp. 119-125 (in Korean). https://doi.org/10.21086/ksles.2018.02.25.1.119
  9. Jo, D. K., Chun, I. S., Jeon, M. S., Kang, Y. H. and Auh, C. M. (2001). "A study on the analysis of solar radiation on inclined surfaces." Journal of the Korean Solar Energy Society, Vol. 21, No. 3, pp. 19-24 (in Korean).
  10. Joo, I. H. (2014). "Floating solar power generation technology overview and current status." Journal of Electrical World Monthly Magazine, pp. 37-41 (in Korean).
  11. Kang, G. W., Park, J. W. and Yang, H. S. (2022). "A study on the prediction of solar photovoltaic power generation using multiplelinear regression." Proceedings of Symposium of the Korean Institute of Communications and Information Sciences, pp. 556-557 (in Korean).
  12. Kim, D. S. and Nam, S. W. (2010). "A study on economic analysis of rural green-village planning using solar energy." Journal of the Korean Society of Agricultural Engineers, Vol. 52, No. 4, pp. 27-34 (in Korean). https://doi.org/10.5389/KSAE.2010.52.4.027
  13. Kim, D. S., Koo, S. M. and Nam, S. W. (2008). "Estimating optimal probability distributions of daily potential photovoltaic power generation for development of rural green-village by solar energy - with area of seosan weather station -." Journal of The Korean Society of Agricultural Engineers, Vol. 50, No. 6, pp. 37-47 (in Korean). https://doi.org/10.5389/KSAE.2008.50.6.037
  14. Kim, J. G., Kim, D. H., Yoo, W. S., Lee, J. Y. and Kim, Y. B. (2017). "Daily prediction of solar power generation based on weather forecast information in Korea." IET Renewable Power Generation, Vol. 11, No. 10, pp. 1268-1273. DOI: https://doi.org/10.1049/iet-rpg.2016.0698.
  15. Kim, J. W. (2019). "A solar power prediction scheme based on machine learning algorithm from weather forecasts." The Journal of Korean Institute of Information Technology, Vol. 17, No. 9, pp. 83-89 (in Korean). https://doi.org/10.14801/jkiit.2019.17.9.83
  16. Kim, S. J., Yu, J. H., Ryu, D. G. and Chang, B. H. (2021). "Longterm prediction of photovoltaic power generation based on machine learning for participation in the small-scale power brokerage market." Proceedings of the KIEE Conference, The Korean Institute of Electrical Engineers, pp. 573-574 (in Korean).
  17. Kim, S. W. and Ryu, J. H. (2020). "A study on computing stochastic capacity of energy storage systems using Monte Carlo simulations." Korean Chemical Engineering Research, Vol. 58, No. 3, pp. 424-429 (in Korean). https://doi.org/10.9713/KCER.2020.58.3.424
  18. Kinanti, S. P., Moeis, A. O. and Kaharudin, D. (2021). "Feasibility analysis of a large scale floating photovoltaic power plant investment using financial modeling with the consideration of uncertainties factors." Proceedings of the Second Asia Pacific International Conference on Industrial Engineering and Operations Management, Surakarta, Indonesia, September 14-16, pp. 2238-2250.
  19. Ko, W. and Kim, J. H. (2020). "Clustering-based scenario reduction approaches for generation of adequate photovoltaic generation scenario." Proceedings of the KIEE Conference, The Korean Institute of Electrical Engineers, pp. 315-316 (in Korean).
  20. Korea Energy Agency (KEA) (2021). New & renewable energy statistics 2020 (2021 Edition), KEA, Ulsan, Korea (in Korean).
  21. Korea Meteorological Agency (KMA) (2022). Data, Available at: https://data.kma.go.kr/data/grnd/select AsosRltmList.do?pgmNo=36 (Accessed: July 1, 2022).
  22. Korea South-East Power Co. (KOEN) (2021). Public data, Available at: https://www.koenergy.kr/kosep /gv/nf/dt/nfdt20/main.do?gubun=KS5106&menuCd=GV050 20306 (Accessed: July 1, 2022)
  23. Kwon, O. G., Choi, S. H., Jo, H. S. and Cha, H. J. (2022a). "The prediction of a floating photovoltaic generation utilizing RNN." The Transactions of The Korean Institute of Electrical Engineers, Vol. 71, No. 8, pp. 1126-1134 (in Korean). https://doi.org/10.5370/KIEE.2022.71.8.1126
  24. Kwon, T. H., Kim, J. Y., Kim, E. K. and Hong, S. K. (2022b). "Effect on power generation of floating photovoltaic power system power by water level change." Journal of the Korean Solar Energy Society, Vol. 42, No. 2, pp. 13-21 (in Korean). https://doi.org/10.7836/kses.2022.42.2.013
  25. Lee, C. S. and Ji, P. S. (2015). "Development of daily PV power forecasting models using ELM." The Transactions of the Korean Institute of Electrical Engineers P. The Korean Institute of Electrical Engineers, Vol. 64, No. 3, pp. 164-168 (in Korean). https://doi.org/10.5370/KIEEP.2015.64.3.164
  26. Lee, G. H. and Song, S. K. (2022). "Predicting solar power generation based on deep neural network." Proceedings of the Korea Contents Association Conference, The Korea Contents Association, pp. 375-376 (in Korean).
  27. Lee, J. I., Park, W. K., Lee, I. W. and Kim, S. H. (2022). "Comparison of solar power prediction model based on statistical and artificial intelligence model and analysis of revenue for forecasting policy." Journal of IKEEE, Vol. 26, No. 3, pp. 23-31 (in Korean).
  28. Lee, K. H. and Kim, W. J. (2016). "Forecasting of 24_hours ahead photovoltaic power output using support vector regression." The Journal of Korean Institute of Information Technology, Vol. 14, No. 3, pp. 175-183 (in Korean). https://doi.org/10.14801/jkiit.2016.14.3.175
  29. Lee, S. M. and Lee, W. J. (2016). "Development of a system for predicting photovoltaic power generation and detecting defects using machine learning." KIPS Transactions on Computer and Communication Systems, Vol. 5, No. 10, pp. 353-360 (in Korean). https://doi.org/10.3745/KTCCS.2016.5.10.353
  30. Lee, Y. R. and Kim, M. K. (2020). "ESS operation planning based on microgrid operating cost." Proceedings of the KIEE Conference, The Korean Institute of Electrical Engineers, pp. 387-388 (in Korean).
  31. Liew, N. and Lee, H. J. (2020). "Performance of a photovoltaic/concentrated solar power hybrid system based on the splitting of the solar spectrum in Korea." Journal of the Korean Solar Energy Society, Vol. 40, No. 6, pp. 61-67 (in Korean). https://doi.org/10.7836/kses.2020.40.6.061
  32. Liu, W., Guo, D., Xu, Y., Cheng, R., Wang, Z. and Li, Y. (2018). "Reliability assessment of power systems with photovoltaic power stations based on intelligent state space reduction and pseudo-sequential Monte Carlo simulation." Energies, Vol. 11, No. 6, 1431.
  33. Qcells (2022). Products. Available at: https://qcells.com/kr/get-started/complete-energy-solution/solar-panel (Accessed: July 1, 2022)
  34. Ryu, H. S., Lee, Y. R. and Kim, M. K. (2020). "Predicting renewable energy generation using LSTM for risk assessment of local level power networks." The transactions of The Korean Institute of Electrical Engineers, Vol. 69, No. 6, pp. 783-791 (in Korean). https://doi.org/10.5370/KIEE.2020.69.6.783
  35. Saemangeum Development and Investment Agency (SDIA) (2022). Introduction of Saemangeum, Available at: http://www.saemangeum.go.kr (Accessed: July 1, 2022)
  36. Serttas, F., Hocaoglu, F. O. and Akarslan, E. (2018). "Short term solar power generation forecasting: a novel approach." International Conference on Photovoltaic Science and Technologies (PVCon), Ankara, Turkey, pp. 1-4, DOI: 10.1109/PVCon.2018.8523919.
  37. Shin, D. B. (2007). "Forecasting exchange rates by Monte Carlo simulation." Journal of Industrial Economics and Business, Vol. 20, No. 5, pp. 2075-2093 (in Korean).
  38. Shin, D. H., Park, J. H. and Kim, C. B. (2017). "Photovoltaic generation forecasting using weather forecast and predictive sunshine and radiation." Journal of Advanced Navigation Technology, Vol. 21, No. 6, pp. 643-650. DOI: https://doi.org/10.12673/JANT.2017.21.6.643 (in Korean).
  39. So, J. H., Hwang, H. M., Jung, Y. S., Ko, S. W., Ju, Y. C. and Lim, H. M., (2013). "Design factor calculation and analysis of grid-connected photovoltaic system." Journal of the Korean Solar Energy Society, Vol. 33, No. 5, pp. 89-94 (in Korean). https://doi.org/10.7836/KSES.2013.33.5.089
  40. Song, J. J., Jeong, Y. S. and Lee, S. H. (2014). "Analysis of prediction model for solar power generation." Journal of Digital Convergence, Vol. 12, No. 3, pp. 243-248 (in Korean). https://doi.org/10.14400/JDC.2014.12.3.243
  41. Song, K. J., Jeong, J. I., Moon, J. H., Kwon, S. C. and Kim, H. S. (2022). "MuLti-Site Pv Power Forecasting Using TransGRU based on Delaunay Tirangulation." Proceedings of the KIEE Conference, The Korean Institute of Electrical Engineers, pp. 354-355 (in Korean).
  42. Yoo, S. P., Jin, J. S., Kim, H. K., Kim, Y. H., Jeong, S. D., Seo, Y. S. and Jeong, N. J. (2009). "Improving the effectiveness of a photovoltaic system by water impinging jet on the surface of photovoltaic cells." Proceedings of the KSES 2009 Spring Annual Conference, pp. 241-244 (in Korean).