DOI QR코드

DOI QR Code

Comparison of Polymer and BANGTM Gel Dosimeters to Use a Optical Computed Tomography Scanner

광학 전산화단층촬영 스캐너 사용을 위한 중합체 겔과 BANGTM 겔 선량계의 특성 비교

  • 장경환 (극동대학교 방사선학과)
  • Received : 2023.02.22
  • Accepted : 2023.03.14
  • Published : 2023.04.30

Abstract

The purpose of this study was to compare the basic radiological characteristics of in-house polymer gel and commercially-available gel (BANGTM) gel dosimeters with a spectro-photometer to use a optical computed tomography (CT) scanner. We investigated the radiological characteristics including dose linearity, absorbance spectrum, dose rate dependency and inter-and intra-reproducibility at wavelengths of 590, 600 and 630 nm. The optimal dose linearities of two gel dosimeters showed R2 value of 0.939 and 0.948 at wavelengths of 590 nm and 600 nm, respectively. For two polymer gel dosimeters, there is no peak sensitivity within the range of all wavelengths in absorbance spectrum. For in-house gel dosimeter, the dose rate dependency were within 5% for all wavelengths except for the dose rate of 100 MU/min. For BANGTM gel dosimeter, the dose rate dependency showed an error range of ±5% for all wavelengths. The inter-and intra-reproducibility of two gel dosimeters were within the range of 2.5%. We have confirmed that the two gel dosimeters was appropriate for use with a optical CT scanner.

Keywords

References

  1. Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med Phys. 2018;45(4):e53-83. https://doi.org/10.1002/mp.12810
  2. Intensity Modulated Radiation Therapy Collaborative Working Group. Intensity-modulated radiotherapy: Current status and issues of interest. Int J Radiat Oncol Biol Phys. 2001;51(4):880-914. https://doi.org/10.1016/S0360-3016(01)01749-7
  3. Cho B. Intensity-modulated radiation therapy: A review with a physics perspective. Radiat Oncol J. 2018;36(1):1-10. https://doi.org/10.3857/roj.2018.00122
  4. Babic S, Battista J, Jordan K. Three-dimensional dose verification for intensity-modulated radiation therapy in the radiological physics centre head-and-neck phantom using optical computed tomography scans of ferrous xylenol-orange gel dosimeters. Int J Radiat Oncol Biol Phys. 2008;70(4):1281-91. https://doi.org/10.1016/j.ijrobp.2007.11.032
  5. Oldham M. 3D dosimetry by optical-CT scanning. J Phys Conf Ser. 2006;56:58-71. https://doi.org/10.1088/1742-6596/56/1/006
  6. Chang KH, Lee S, Jung H, Choo YW, Cao YJ, Shim JB, et al. Development of a 3D optical scanner for evaluating patient-specific dose distributions. Physica Medica. 2015;31(5):553-9. https://doi.org/10.1016/j.ejmp.2015.05.009
  7. Mein S, Rankine L, Adamovics J, Li H, Oldham M. Development of a 3D remote dosimetry protocol compatible with MRgIMRT. Med Phys. 2017;44(11):6018-28. https://doi.org/10.1002/mp.12565
  8. Soliman YS, El Gohary MI, Abdel Gawad MH, Amin EA, Desouky OS. Fricke gel dosimeter as a tool in quality assurance of the radiotherapy treatment plans. Appl Radiat Isot. 2017;120:126-32. https://doi.org/10.1016/j.apradiso.2016.12.004
  9. De Deene Y, De Wagter C, Van Duyse B, Derycke S, Mersseman B, De Gersem W, Voet T, Achten E, De Neve W. Validation of MR-based polymer gel dosimetry as a preclinical three-dimensional verification tool in conformal radiotherapy. Magn Reson Med. 2000;43(1):116-25. https://doi.org/10.1002/(SICI)1522-2594(200001)43:1<116::AID-MRM14>3.0.CO;2-5
  10. Guo PY, Adamovics JA, Oldham M. Characterization of a new radiochromic three-dimensional dosimeter. Med Phys. 2006;33(5):1338-45. https://doi.org/10.1118/1.2192888
  11. Chang KH, Ji Y, Lee S, Kim KH, Yang DS, Lee JA, et al. Basic radiological characteristics of a non-scattering gel dosimeter for 3D dosimetry. J Korean Phys Soc. 2016;69(11):1694-99. https://doi.org/10.3938/jkps.69.1694
  12. Valente M, Molina W, Silva LC, Figueroa R, Malano F, PPrez P, SantibaPez M, Vedelago J. Fricke gel dosimeter with improved sensitivity for low-dose-level measurements. J Appl Clin Med Phys. 2016;17(4):402-17. https://doi.org/10.1120/jacmp.v17i4.5626
  13. De Deene Y, Hurley C, Venning A, Vergote K, Mather M, Healy BJ, Baldock C. A basic study of some normoxic polymer gel dosimeters. Phys Med Biol. 2002;47(19):3441-63. https://doi.org/10.1088/0031-9155/47/19/301
  14. Haraldsson P, Karlsson A, Wieslander E, Gustavsson H, BPck SA. Dose response evaluation of a low-density normoxic polymer gel dosimeter using MRI. Phys Med Biol. 2006;51(4):919-28. https://doi.org/10.1088/0031-9155/51/4/011
  15. Jirasek A, Hilts M, McAuley KB. Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry. Phys Med Biol. 2010;55(18):5269-81. https://doi.org/10.1088/0031-9155/55/18/002
  16. Jirasek AI, Duzenli C. Effects of crosslinker fraction in polymer gel dosimeters using FT Raman spectroscopy. Phys Med Biol. 2001 Jul;46(7):1949-61. https://doi.org/10.1088/0031-9155/46/7/315
  17. Cho SJ, Shim SJ, Kim CY, Yang DS, Park YJ, Lee S, et al. Analysis of the dosimetric characteristics of normoxic polymer gel by magnetic resonance images. J Korean Phys Soc. 2010;56(3):874-79. https://doi.org/10.3938/jkps.56.874
  18. Murakami Y, Nakashima T, Watanabe Y, Akimitsu T, Matsuura K, Kenjo M, et al. Evaluation of the basic properties of the BANGkit gel dosimeter. Phys Med Biol. 2007;52(8):2301-11. https://doi.org/10.1088/0031-9155/52/8/017
  19. Sakhalkar HS, Adamovics J, Ibbott G, Oldham M. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system. Med Phys. 2009;36(1):71-82. https://doi.org/10.1118/1.3005609
  20. Campbell WG, Rudko DA, Braam NA, Wells DM, Jirasek A. A prototype fan-beam optical CT scanner for 3D dosimetry. Med Phys. 2013;40(6):061712.
  21. Papadakis AE, Zacharakis G, Maris TG, Ripoll J, Damilakis J. A new optical-CT apparatus for 3-D radiotherapy dosimetry: Is free space scanning feasible? IEEE Trans Med Imaging. 2010;29(5):1204-12. https://doi.org/10.1109/TMI.2010.2044800
  22. Kumar DS, Samue JJ. Investigation on Tissue Equivalent Normoxic Polymer Gel Dosimeter using In-house Laser CT scanning system. J. Phys. Conf. Ser. 2010;250:012-40.
  23. Chang KH, Ji Y, Lee S, Kim KH, Yang DS, Lee JA, et al. Spectrophotometric determination of the optimal wavelength for a polymer-gel dosimeter. J Korean Phys Soc. 2013;62(8):1194-8. https://doi.org/10.3938/jkps.62.1194
  24. Bero MA, Gilboy WB, Glover PM. Radiochromic gel dosemeter for three-dimensional dosimetry. Radiation Physics and Chemistry. 2001;61(3):433-5. https://doi.org/10.1016/S0969-806X(01)00289-4
  25. Solc J, SpevPcek V. New radiochromic gel for 3D dosimetry based on Turnbull blue: Basic properties. Phys Med Biol. 2009;54(17):5095-107. https://doi.org/10.1088/0031-9155/54/17/002