DOI QR코드

DOI QR Code

Mechanism of Tungsten Recovery from Spent Cemented Carbide by Molten Salt Electrodeposition

  • Hongxuan Xing (School of Materials and Metallurgy, University of Science and Technology Liaoning) ;
  • Zhen Li (Yingkou Institute of Technology) ;
  • Enrui Feng (School of Materials and Metallurgy, University of Science and Technology Liaoning) ;
  • Xiaomin Wang (Yingkou Institute of Technology) ;
  • Hongguang Kang (School of Materials and Metallurgy, University of Science and Technology Liaoning) ;
  • Yiyong Wang (School of Materials and Metallurgy, University of Science and Technology Liaoning) ;
  • Hui Jin (School of Materials and Metallurgy, University of Science and Technology Liaoning) ;
  • Jidong Li (School of Materials and Metallurgy, University of Science and Technology Liaoning)
  • Received : 2022.08.17
  • Accepted : 2022.10.12
  • Published : 2023.02.28

Abstract

The accumulation of spent carbide (YG8), not only pollutes the environment but also causes waste of tungsten, cobalt and other rare metal resources. To better address this issue, we proposed a combined electrochemical separation process of low-temperature aqueous solution and high-temperature molten salt for tungsten and cobalt. H2WO4 was obtained from spent carbide in an aqueous solution, and we calcined it to obtain WO3, which was used as a raw material to obtain tungsten by using molten salt electrodeposition. The influence of the current efficiency and the electrochemical behavior of the discharge precipitation of W(VI) were also studied. The calcination results showed that the morphology of WO3 was regular and there were no other impurities. The maximum current efficiency of 82.91% was achieved in a series of electrodeposition experiments. According to XRD and SEM analysis, the recovered product was high purity tungsten, which belongs to the simple cubic crystal system. In the W(VI) reduction mechanism experiments, the electrochemical process of W(VI) in NaCl-Na2WO4-WO3 molten salt was investigated using linear scanning voltammetry (LSV) and chronoamperometry in a three-electrode system. The LSV showed that W(VI) was reduced at the cathode in two steps and the electrode reaction was controlled by diffusion. The fitting results of chronoamperometry showed that the nucleation mechanism of W(VI) was an instantaneous nucleation mode, and the diffusion coefficient was 7.379×10-10 cm2·s-1.

Keywords

Acknowledgement

This work was supported by Support Plan of Innovative Talents in Universities of Liaoning (Grant No.2020-LN-064). Doctoral Start-up Foundation of Liaoning Province, China (Grant No.2020-BS-226), Study on properties and damage mechanism of synthetic Magnesium calcare-resistant materials, Grant/Award Number: L2020005" and The Youth Backbone Talent Project of University of Science and Technology Liaoning (601011507-11).

References

  1. O. G. Kuznetsova, A. M. Levin, M. A. Sevostyanov, and A. O. Bolshih, IOP Conf. Ser.: Mater. Sci. Eng., 2019, 525, 012088.
  2. S. Y. Byun, J. S Park., J. H. Kang, S. Seo, T. Tran, and M. J. Kim, J. Air Waste Manag. Assoc., 2021, 71(6), 711-720. https://doi.org/10.1080/10962247.2021.1876780
  3. P. K. Katiyar and N. S. Randhawa, Int. J. Refract. Met. Hard Mater., 2020, 90, 105251.
  4. Q. Zhang, X. Xi, L. Zhang, M. Feng, Z. Nie, and L. Ma, J. Electroanal. Chem., 2021, 896, 115219.
  5. M. Li, X. Xi, Q. Liu, Z. Nie, and L. Ma, J. Electroanal. Chem., 2019, 833, 480-489. https://doi.org/10.1016/j.jelechem.2018.12.032
  6. X. Xi, X. Xiao, Z. Nie, L. Zhang, and L. Ma, J. Electroanal. Chem., 2017, 794, 254-263. https://doi.org/10.1016/j.jelechem.2017.04.001
  7. X. Xiao, X. Xi, Z. Nie, and L. Ma, Metall. Mater. Trans. B, 2017, 48(1), 692-700.
  8. H. Kang, J. Li, C. Zhang, J. Lu, Q. Wang, and Y. Wang, RSC Adv., 2020, 10, 22036-22042.
  9. J. A. M. Oliveira, A. F. de Almeida, A. R. N. Campos, S. Prasad, J. J. N. Alves, and R. A. C. de Santana, J. Alloys Compd., 2021, 853, 157104.
  10. Y. Li, T. Lei, Y. Chen, P. Li, W. Li, J. Zheng, J. Zhu, S. Deng, and G. Cao, Appl. Surf. Sci., 2020, 509,145287.
  11. T. Nohira, X. Meng, T. Ide, Y. Norikawa, and K. Yasuda, ECS Trans., 2020, 98(10), 189-198. https://doi.org/10.1149/09810.0189ecst
  12. A. Kobayashi, S. Sharafat, and N. M. Ghoniem, Surf. Coat. Technol., 2006, 200(14-15), 4630-4635. https://doi.org/10.1016/j.surfcoat.2005.04.013
  13. M. Li, Z. Sun, D. Guo, W. Han, Y. Sun, X. Yang, and M. Zhang, Ionics, 2020, 26, 3901-0909.
  14. Y. Cao, J. Yuan, H. Du, D. Derisinger, and M. Li, Miner. Eng., 2021, 165(2), 106857.
  15. Y. Kamimoto, R. Kasuga, K. Takeshita, T. Hagio, K. Kuroda, R. Ichino, and P. Deevanhxay, J. Mater. Cycles Waste Manag., 2020, 22, 348-353. https://doi.org/10.1007/s10163-019-00962-x
  16. Q. Zhang, X. Xi, Z. Nie, L. Zhang, and L. Ma, Int. J. Refract. Met. Hard Mater., 2019, 79, 145-153. https://doi.org/10.1016/j.ijrmhm.2018.12.001
  17. C. Liao, B. Cai, X. Wang, S. Chen, G. Chen, and J. Lin, J. Rare Earths, 2020, 38(4), 427-435.
  18. Z. Hou, X. Wang, J. Li, Z. Li, Y. Wang and H. Xing, Front. Chem., 2022, 10, 871420.
  19. A. Tadano and R. Aogaki, J. Chem. Phys., 1997, 106, 6126.
  20. B. Scharifker and G. Hills, Electrochim. Acta, 1983, 28(7), 879-889. https://doi.org/10.1016/0013-4686(83)85163-9
  21. G. Gunawardena, G. Hills, I. Montenegro, and B. Scharifker, J. Electroanal. Chem. Interfacial Electrochem., 1982, 138(2), 255-271. https://doi.org/10.1016/0022-0728(82)85082-1
  22. F. Sun, Z. Zhao, and X. Chen, Int. J. Refract. Met. Hard Mater., 2019, 80, 23-29. https://doi.org/10.1016/j.ijrmhm.2018.12.014