DOI QR코드

DOI QR Code

Behaviour insights on damage-control composite beam-to-beam connections with replaceable elements

  • Xiuzhang He (School of Civil Engineering, Chongqing University) ;
  • Michael C.H. Yam (Department of Building and Real Estate, The Hong Kong Polytechnic University) ;
  • Ke Ke (School of Civil Engineering, Chongqing University) ;
  • Xuhong Zhou (School of Civil Engineering, Chongqing University) ;
  • Huanyang Zhang (School of Civil Engineering, Chongqing University) ;
  • Zi Gu (School of Civil Engineering, Chongqing University)
  • 투고 : 2022.10.08
  • 심사 : 2023.02.16
  • 발행 : 2023.03.25

초록

Connections with damage concentrated to pre-selected components can enhance seismic resilience for moment resisting frames. These pre-selected components always yield early to dissipate energy, and their energy dissipation mechanisms vary from one to another, depending on their position in the connection, geometry configuration details, and mechanical characteristics. This paper presents behaviour insights on two types of beam-to-beam connections that the angles were designed as energy dissipation components, through the results of experimental study and finite element analysis. Firstly, an experimental programme was reviewed, and key responses concerning the working mechanism of the connections were presented, including strain distribution at the critical section, section force responses of essential components, and initial stiffness of test specimens. Subsequently, finite element models of three specimens were established to further interpret their behaviour and response that were not observable in the tests. The moment and shear force transfer paths of the composite connections were clarified through the test results and finite element analysis. It was observed that the bending moment is mainly resisted by axial forces from the components, and the dominant axial force is from the bottom angles; the shear force at the critical section is primarily taken by the slab and the components near the top flange. Lastly, based on the insights on the load transfer path of the composite connections, preliminary design recommendations are proposed. In particular, a resistance requirement, quantified by a moment capacity ratio, was placed on the connections. Design models and equations were also developed for predicting the yield moment resistance and the shear resistance of the connections. A flexible beam model was proposed to quantify the shear resistance of essential components.

키워드

과제정보

This work is supported by Science and Technology Commission of Shanghai Municipality through Shanghai Sailing Program (Grant No. 21YF1450700) and National Natural Science Foundation of China (Grant Nos. 52178111). Funding supports from the Fundamental Research Funds for the Central Universities 2022CDJQY-009 is acknowledged.

참고문헌

  1. Calado, L., Proenca, J.M. and Sio, J. (2020), "Seismic design and assessment of steel-concrete frame structures with welded dissipative fuses", Steel Compos. Struct., 35(4), 527-544. https://doi.org/10.12989/scs.2020.35.4.527.
  2. Chen, J., Fang, H. and Chan, T.M. (2021), "Design of fixed-ended octagonal shaped steel hollow sections in compression", Eng. Struct., 228, 111520. https://doi.org/10.1016/j.engstruct.2020.111520.
  3. Chen, M.T. and Young, B. (2018), "Cross-sectional behavior of cold-formed steel semi-oval hollow sections", Eng. Struct., 177, 318-330. https://doi.org/10.1016/j.engstruct.2018.08.057.
  4. Chen, M.T. and Young, B. (2019), "Structural behavior of cold-formed steel semi-oval hollow section beams", Eng. Struct., 185, 400-411. https://doi.org/10.1016/j.engstruct.2019.01.069.
  5. Chen, M.T., Young, B., Martins, A.D., Camotim, D. and Dinis, P.B. (2020a), "Uniformly bent CFS lipped channel beams experiencing local-distortional interaction: Experimental investigation", J. Constr. Steel Res., 170, 106098. https://doi.org/10.1016/j.jcsr.2020.106098.
  6. Chen, M.T., Young, B., Martins, A.D., Camotim, D. and Dinis, P.B. (2020b), "Experimental investigation on cold-formed steel stiffened lipped channel columns undergoing local-distortional interaction", Thin. Wall. Struct., 150, 106682. https://doi.org/10.1016/j.tws.2020.106682.
  7. Chen, M.T. and Young, B. (2020a), "Tests of cold-formed steel semi-oval hollow section members under eccentric axial load", J. Struct. Eng., 146(4), 04020027. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002468.
  8. Chen, M.T. and Young, B. (2020b), "Tensile tests of cold-formed stainless steel tubes", J. Struct. Eng., 146(9), 04020165. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002738.
  9. Chen, M.T. and Young, B. (2020c), "Beam-column tests of cold-formed steel elliptical hollow sections", Eng. Struct., 210: 109911. https://doi.org/10.1016/j.engstruct.2019.109911.
  10. Chen, M.T., Young, B., Martins, A.D., Camotim, D. and Dinis, P.B. (2021), "Experimental investigation on cold-formed steel lipped channel beams affected by local-distortional interaction under non-uniform bending", Thin. Wall. Struct., 161, 107494. https://doi.org/10.1016/j.tws.2021.107494.
  11. Chen, M.T. and Young, B. (2021a), "Beam-column design of cold-formed steel semi-oval hollow non-slender sections", Thin. Wall. Struct., 162, 107376. https://doi.org/10.1016/j.tws.2020.107376.
  12. Chen, M.T. and Young, B. (2021b), "Numerical analysis and design of cold-formed steel elliptical hollow sections under combined compression and bending", Eng. Struct., 241, 112417. https://doi.org/10.1016/j.engstruct.2021.112417.
  13. Chen, M.T., Chen, Y. and Young, B. (2023a), "Experimental investigation on cold-formed steel elliptical T-joints", Eng. Struct., 283, https://doi.org/10.1016/j.engstruct.2023.115593.
  14. Chen, M.T., Cai, A., Pandey, M., Shen, C., Zhang, Y. and Hu, L. (2023b), "Mechanical properties of high strength steels and weld metals at arctic low temperatures", Thin. Wall. Struct., 185, https://doi.org/10.1016/j.tws.2023.110543.
  15. Chen, S., Fang, H., Liu, J.Z. and Chan, T.M. (2022), "Design for local buckling behaviour of welded high strength steel I-sections under bending", Thin. Wall. Struct., 172, 108792. https://doi.org/10.1016/j.tws.2021.108792.
  16. Cho, S.H. and Redwood, R.G. (1992), "Slab behavior in composite beams at openings. I: Analysis", J. Struct. Eng., 118(9), 2287-2303. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:9(2287).
  17. Chen, Y. and Ke, K. (2019), "Seismic performance of high-strength-steel frame equipped with sacrificial beams of non-compact sections in energy dissipation bays", Thin. Wall. Struct., 139, 169-185. https://doi.org/10.1016/j.tws.2019.02.035.
  18. Fang, C., Wang, W., He, C. and Chen, Y. (2017), "Self-centering behaviour of steel and steel-concrete composite connections equipped with NiTi SMA bolts", Eng. Struct., 150, 390-408. https://doi.org/10.1016/j.engstruct.2017.07.067.
  19. Fang, C., Wang, W., Zhang, A., Sause, R., Ricles, J. and Chen, Y. (2019), "Behavior and design of self-centering energy dissipative devices equipped with superelastic SMA ring springs", J. Struct. Eng., 145(10), 04019109. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002414.
  20. Fang, H., Chan, T.M. and Young, B. (2021), "Structural performance of concrete-filled cold-formed high-strength steel octagonal tubular stub columns", Eng. Struct., 239, 112360. https://doi.org/10.1016/j.engstruct.2021.112360.
  21. Fang, H. and Visintin, P. (2022), "Structural performance of geopolymer-concrete-filled steel tube members subjected to compression and bending", J. Constr. Steel Res., 188, 107026. https://doi.org/10.1016/j.jcsr.2021.107026.
  22. GB50017-2017 (2017), Standard for Design of Steel Structures, Beijing, China.
  23. Grassl, P. and Jirasek, M. (2006), "Damage-plastic model for concrete failure", Int. J. Solids Struct., 43(22-23), 7166-7196. https://doi.org/10.1016/j.ijsolstr.2006.06.032.
  24. Grassl, P., Xenos, D., Nystrom, U., Rempling, R. and Gylltoft, K. (2013), "CDPM2: A damage-plasticity approach to modelling the failure of concrete", Int. J. Solids Struct., 50(24), 3805-3816. https://doi.org/10.1016/j.ijsolstr.2013.07.008.
  25. Guan, M., Liu, W., Lai, M., Du, H., Cui, J. and Gan, Y. (2019), "Seismic behaviour of innovative composite walls with high-strength manufactured sand concrete", Eng. Struct., 195, 182-199. https://doi.org/10.1016/j.engstruct.2019.05.096.
  26. He, X., Chen, Y., Ke, K., Shao, T. and Yam, M.C.H. (2022a), "Development of a connection equipped with fuse angles for steel moment resisting frames", Eng. Struct., 265, 114503. https://doi.org/10.1016/j.engstruct.2022.114503.
  27. He, X., Ke, K., Chen, Y., Yam, M.C.H. and Shao, T. (2022b), "An experimental study of steel-concrete composite connections equipped with fuse angles", J. Constr. Steel Res., 195, 107357. https://doi.org/10.1016/j.jcsr.2022.107357.
  28. He, X., Chen, Y., Eatherton, M.R. and Shao, T. (2018), "Experimental evaluation of replaceable energy dissipation connection for moment-resisting composite steel frames", J. Struct. Eng., 144(6), 04018042. https://doi.org/10.1061/(ASCE)ST.1943541X.0002028.
  29. Ho, J.C.M., Ou, X.L., Chen, M.T., Wang, Q. and Lai, M.H. (2020), "A path dependent constitutive model for CFFT column", Eng. Struct., 210, 110367. https://doi.org/10.1016/j.engstruct.2020.110367.
  30. Ho, J.C.M., Ou, X.L., Li, C.W., Song, W., Wang, Q. and Lai, M.H. (2021), "Uni-axial behaviour of expansive CFST and DSCFST stub columns", Eng. Struct., 237, 112193. https://doi.org/10.1016/j.engstruct.2021.112193.
  31. Ho, J.C.M., Liang, Y., Wang, Y.H., Lai, M.H., Huang, Z.C., Yang, D. and Zhang Q.L. (2022), "Residual properties of steel slag coarse aggregate concrete after exposure to elevated temperatures", Constr. Build. Mater., 316, 125751. https://doi.org/10.1016/j.conbuildmat.2021.125751.
  32. Hu, S., Wang, W., Alam, M.S. and Ke, K. (2023), "Life-cycle benefits estimation of self-centering building structures", Eng. Struct., 284, 115982. https://doi.org/10.1016/j.engstruct.2023.115982.
  33. Jiang, Z., Niu, Z., Zhang, A.L., Liu, X. and Li, S.H. (2019a), "Experimental study of earthquake-resilient prefabricated sinusoidal corrugated web beam-column joint", Thin. Wall. Struct., 144, 106306. https://doi.org/10.1016/j.tws.2019.106306.
  34. Jiang, Z., Yang, X.F., Dou, C., Li, C. and Zhang, A. (2019b), "Cyclic testing of replaceable damper: earthquake-resilient prefabricated column-flange beam-column joint", Eng. Struct., 183, 922-936. https://doi.org/10.1016/j.engstruct.2019.01.060.
  35. Ke, K. and Chen, Y. (2014), "Energy-based damage-control design of steel frames with steel slit walls", Struct. Eng. Mech., 52(6), 1157-1176.https://doi.org/10.12989/sem.2014.52.6.1157.
  36. Ke, K. and Yam, M.C.H (2016), "Energy-factor-based damage-control evaluation of steel MRF systems with fuses", Steel Compos. Struct., 22(3), 589-611. https://doi.org/10.12989/scs.2016.22.3.589.
  37. Ke, K., Xiong, Y.H., Yam, M.C.H., Lam, A.C.C. and Chung, K.F. (2018), "Shear lag effect on ultimate tensile capacity of high strength steel angles", J. Constr. Steel Res., 145, 300-314. https://doi.org/10.1016/j.jcsr.2018.02.015.
  38. Ke, K., Zhang, M., Yam, M.C.H., Lam, A.C.C., Wang, J. and Jiang, B. (2022a), "Block shear performance of double-line bolted S690 steel angles under uniaxial tension", Thin. Wall. Struct., 171, 108668. https://doi.org/10.1016/j.tws.2021.108668.
  39. Ke, K., Zhou, X., Zhu, M., Yam, M.C.H., Wang, Y. and Zhang, H. (2022b), "Seismic evaluation of industrial steel moment resisting frames with shape memory alloys using performance-spectra-based method", J. Build. Eng., 48, 103950. https://doi.org/10.1016/j.jobe.2021.103950.
  40. Ke, K., Zhou, X., Zhang, H., Yam, M.C.H., Guo, L. and Chen, Y. (2022c), "Performance-based-plastic-design of damage-control steel MRFs equipped with self-centring energy dissipation bays", J. Constr. Steel Res., 192, 107230. https://doi.org/10.1016/j.jcsr.2022.107230.
  41. Ke, K., Chen, Y., Zhou, X., Yam, M.C.H. and Hu, S. (2023a), "Experimental and numerical study of a brace-type hybrid damper with steel slit plates enhanced by friction mechanism", Thin. Wall. Struct., 182, 110249. https://doi.org/10.1016/j.tws.2022.110249.
  42. Ke, K., Yam, M.C.H., Zhang, P., Shi, Y., Li, Y. and Liu, S. (2023b), "Self-centring damper with multi-energy-dissipation mechanisms: Insights and structural seismic demand perspective", J. Constr. Steel Res., 204, 107837. https://doi.org/10.1016/j.jcsr.2023.107837.
  43. Ke, K., Zhou, H.H., Zhu, M., Yam, M.C.H., Zhang, H.Y. (2023c), "Seismic demand amplication of steel frames with SMAs induced by earthquakes sequences", J. Construct. Steel Res., 107929. http://doi.org.10.1016/j,jcsr.2023.107929.
  44. Koken, A. and Koroglu, M.A. (2015), "Experimental Study on beam-to-column connections of steel frame structures with steel slit dampers", J. Perform. Constr. Facil., 29(2), 04014066. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000553.
  45. Lai, M.H., Chen, M.T., Ren, F.M. and Ho, J.C.M. (2019), "Uni-axial behaviour of externally confined UHSCFST columns", Thin. Wall. Struct., 142, 19-36. https://doi.org/10.1016/j.tws.2019.04.047.
  46. Lai, M.H., Griffith, A.M., Hanzic, L., Wang, Q. and Ho, J.C.M. (2021), "Interdependence of passing ability, dilatancy and wet packing density of concrete", Constr. Build. Mater., 270, 121440. https://doi.org/10.1016/j.conbuildmat.2020.121440.
  47. Lai, M.H., Wu, K., Ou, X., Zeng, M., Li, C. and Ho, J.C.M. (2022a), "Effect of concrete wet packing density on the uni-axial strength of manufactured sand CFST columns", Struct. Concrete., 23(4), 2615-2629. https://doi.org/10.1002/suco.202100280.
  48. Lai, M.H., Binhowimal, S.A.M., Griffith, A.M., Wang, Q., Chen, Z., Ho, J.C.M. and Hanzic, L. (2022b), "Shrinkage, cementitious paste volume and wet packing density of concrete", Struct. Concrete., 23(1), 488-504. https://doi.org/10.1002/suco.202000407.
  49. Lai, M.H., Chen, Z.H, Wang, Y.H and Ho, J.C.M. (2022c), "Effect of fillers on the mechanical properties and durability of steel slag concrete", Constr. Build. Mater., 335, 127495. https://doi.org/10.1016/j.conbuildmat.2022.127495.
  50. Lai, M.H, Lao, W.C., Tang, W.K., Hanzic, L., Wang, Q. and Ho, J.C.M. (2023a), "Dilatancy swerve in superplasticized cement powder paste", Constr. Build. Mater., 362, 129524. https://doi.org/10.1016/j.conbuildmat.2022.129524.
  51. Lai, M.H., Lin, Y.H., Jin, Y.Y., Fei, Q., Wang, Z.C. and Ho, J.C.M. (2023b), "Uni-axial behaviour of steel slag concrete-filled-steel-tube columns with external confinement", Thin. Wall. Struct., 362, 110562. https://doi.org/10.1016/j.tws.2023.110562.
  52. Lan, T., Li, R., Jiang, Z.Q., Zhang, H. and Wang, H.W. (2020), "Experimental study of earthquake-resilient prefabricated opening-web steel channel beam-column joint with double FCPs", J. Constr. Steel Res., 175, 106356. https://doi.org/10.1016/j.jcsr.2020.106356.
  53. Li, L., Liao, W., Wang, J. and Zhou, D. (2015), "Behavior of continuous steel-concrete composite beams with web openings", Int. J. Steel Struct., 15(4), 989-997. https://doi.org/10.1007/s13296-015-1218-2.
  54. Lian, M., Zhang, H., Cheng, Q. and Su, M. (2019), "Finite element analysis for the seismic performance of steel frame-tube structures with replaceable shear links", Steel Compos. Struct., 30(4), 365-382. https://doi.org/10.12989/scs.2019.30.4.365.
  55. Lian, M., Cheng, Q., Guan, B., Zhang, H. and Su, M. (2020), "Seismic performance of high-strength steel framed-tube structures with bolted web-connected replaceable shear links", Steel Compos. Struct., 37(3), 323-339. https://doi.org/10.12989/scs.2020.5.37.323.
  56. Liang, Q.Q., Uy, B., Bradford, M.A. and Ronagh, H.R. (2004), "Ultimate strength of continuous composite beams in combined bending and shear", J. Constr. Steel Res., 60(8), 1109-1128. https://doi.org/10.1016/j.jcsr.2003.12.001.
  57. Liang, Q.Q., Uy, B., Bradford, M.A. and Ronagh, H.R. (2005), "Strength analysis of steel-concrete composite beams in combined bending and shear", J. Struct. Eng., 131(10), 1593-1600. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:10(1593).
  58. Liu, J. and Astaneh-Asl, A. (2000), "Cyclic testing of simple connections including effects of slab", J. Struct. Eng., 126(1), 32-39. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:1(32).
  59. Lu, Y., Guo, Z., Basha, S.H. and Liu, Y. (2022), "Performance of steel beams with replaceable buckling restrained fuses under cyclic loading", J. Constr. Steel Res., 194, 107310. https://doi.org/10.1016/j.jcsr.2022.107310.
  60. Luo, Z., Shi, Y., Xue, X., Xu, L. and Zhang, H. (2023a), "Design recommendations on longitudinally stiffened titanium-clad bimetallic steel plate girder", Constr. Steel Res., 201, 107748. https://doi.org/10.1016/j.jcsr.2022.107748
  61. Luo Z., Shi Y., Xue, X., Zhou X. and Yao X. (2023b), "Nonlinear patch resistance performance of hybrid titanium-clad bimetallic steel plate girder with web opening", J. Build. Eng., 65, 105703.
  62. Men, P., Zhou, X., Zhang, Z., Di, J. and Qin, F. (2021), "Behaviour of steel-concrete composite girders under combined negative moment and shear", J. Constr. Steel Res., 179, 106508. https://doi.org/10.1016/j.jcsr.2020.106508.
  63. Nakashima, M., Matsumiya, T., Suita, K. and Zhou, F. (2007), "Full-scale test of composite frame under large cyclic loading", J. Struct. Eng., 133(2), 297-304. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(297).
  64. Nie, J., Xiao, Y. and Chen, L. (2004), "Experimental studies on shear strength of steel-concrete composite beams", J. Struct. Eng., 130(8), 1206-1213. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:8(1206).
  65. Ozkilic, Y.O. (2020), "A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections", Steel Compos. Struct. 35(3), 353-370. https://doi.org/10.12989/scs.2020.35.3.353.
  66. Phillips, A.R. and Eatherton, M.R. (2018), "Computational study of elastic and inelastic ring shaped - steel plate shear wall behavior", Eng. Struct., 177, 655-667. https://doi.org/10.1016/j.engstruct.2018.10.008.
  67. Ren, F.M., Tian, S.Y, Gong, L., Wu, J.L., Mo, J.X., Lai, C.L. and Lai, M.H. (2023), "Seismic performance of a ring beam joint connecting FTCES column and RC / ESRC beam with NSC", J. Build. Eng., 63, 105366. https://doi.org/10.1016/j.jobe.2022.105366.
  68. Richards, P.W. and Oh, S.S. (2019), "Cyclic behavior of replaceable shear fuse connections for steel moment frames", J. Struct. Eng., 145(12), 04019516. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002412.
  69. Saffari, H., Hedayat, A.A. and Nejad, M.P. (2013), "Post-northridge connections with slit dampers to enhance strength and ductility", J. Constr. Steel Res., 80, 138-152. https://doi.org/10.1016/j.jcsr.2012.09.023.
  70. Shen, Y., Christopoulos, C., Mansour, N. and Tremblay, R. (2011), "Seismic design and performance of steel moment-resisting frames with nonlinear replaceable links", J. Struct. Eng., 137(10), 1107-1117. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000359.
  71. Tabar, A.M. and Deylami, A. (2006), "Investigation of major parameters affecting instability of steel beams with RBS moment connections", Steel Compos. Struct., 6(3), 203-219. https://doi.org/10.12989/scs.2006.6.3.203.
  72. Vasdravellis, G. and Uy, B. (2014), "Shear strength and moment-shear interaction in steel-concrete composite beams", J. Struct. Eng., 140(11), 04014084. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001008.
  73. Wang, B., Zhu, S., Chen, K. and Huang, J. (2020), "Development of superelastic SMA angles as seismic-resistant self-centering devices", Eng. Struct., 218, 110836. https://doi.org/10.1016/j.engstruct.2020.110836.
  74. Wang, J., Ke, K. and Wang, W. (2022), "Structural robustness evaluation of steel frame buildings with different composite slabs using reduced-order modeling strategies", J. Constr. Steel Res., 196, 107371. https://doi.org/10.1016/j.jcsr.2022.107371.
  75. Wang, J., Wang, W. and Qian, X. (2019), "Progressive collapse simulation of the steel-concrete composite floor system considering ductile fracture of steel", Eng. Struct., 200, 109701. https://doi.org/10.1016/j.engstruct.2019.109701.
  76. Wang, J., Ke, K., Yam, M.C.H., Teng, M. and Wang, W. (2023), "Improving Structural Robustness of Steel Frame Buildings by Enhancing Floor Deck Connections", J. Constr. Steel Res., 204 107842. https://doi.org/10.1016/j.jcsr.2023.107842.
  77. Wang, M., Dong, K. and Liu, M. (2020), "Damage control mechanism and seismic performance of a steel moment connection with replaceable low-yield-point steel double T-stub fuses", Thin. Wall. Struct., 157, 107143. https://doi.org/10.1016/j.tws.2020.107143.
  78. Wang, M., Zhang, C., Sun, Y. and Dong, K. (2022), "Seismic performance of steel frame with replaceable low yield point steel connection components and the effect of structural fuses", Build. Eng., 47, 103862. https://doi.org/10.1016/j.jobe.2021.103862.
  79. Xiao, Y., Xue, X.Y., Sun, F.F. and Li, G.Q. (2018), "Postbuckling shear capacity of high-strength steel plate girders", J. Constr. Steel Res., 150, 475-490. https://doi.org/10.1016/j.jcsr.2018.08.032.
  80. Xiao, Y., Xue, X.Y., Sun, F.F. and Li, G.Q. (2019), "Intermediate transverse stiffener requirements of high-strength steel plate girders considering postbuckling capacity", Eng. Struct., 196, 109289. https://doi.org/10.1016/j.engstruct.2019.109289.
  81. Xu, Y., Su, Y., Shang, Y. and Tian, L. (2022), "Seismic performance of earthquake-resilient prefabricated corrugated web beam-column connection with buckling-restrained plates", J. Constr. Steel Res., 194, 107327. https://doi.org/10.1016/j.jcsr.2022.107327.
  82. Yam, M.C.H., Ke, K., Lam, A.C.C. and Zhao, Q. (2019), "Performance of single-coped beam with slender web and quantification of local web buckling strength", Thin. Wall. Struct., 144, 106355.https://doi.org/10.1016/j.tws.2019.106355.
  83. Yam, M.C.H., Ke, K., Jiang, B. and Lam, A.C.C. (2020), "Net section resistance of bolted S690 steel angles subjected to tension", Thin. Wall. Struct., 151, 106722. https://doi.org/10.1016/j.tws.2020.106722.
  84. Yam, M.C.H., Ke, K., Huang, Y., Zhou, X. and Liu, Y. (2022), "A study of hybrid self-centring beam-to-beam connections equipped with shape-memory-alloy-plates and washers", J. Constr. Steel Res., 198, 107526. https://doi.org/10.1016/j.jcsr.2022.107526.
  85. Yi, S., Chen, M.T. and Young, B. (2023a), "Design of concrete-filled cold-formed steel elliptical stub columns", Eng. Struct., 276, 115269. https://doi.org/10.1016/j.engstruct.2022.115269.
  86. Yi, S., Chen, M.T. and Young, B. (2023b), "Stub column behavior of concrete-filled cold-formed steel semi-oval sections", J. Struct. Eng., 149(3), 04023001. https://doi.org/10.1061/JSENDH.STENG-11667.
  87. Yang, L., Wang, M., Sun, Y., Li, Z. and Li, Y. (2021), "Experimental and numerical study of LY315 steel moment connection with bolted cover plates", Thin. Wall. Struct., 159, 107277. https://doi.org/10.1016/j.tws.2020.107277.
  88. Zahrai, S.M. and Jalali, M. (2014), "Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames", Steel Compos. Struct., 16(1), 1-21. https://doi.org/10.12989/scs.2014.16.1.001.
  89. Zhang, P., Yam, M.C.H., Ke, K., Zhou, X. and Chen, Y. (2022), "Steel moment resisting frames with energy-dissipation rocking columns under near-fault earthquakes: Probabilistic performance-based-plastic-design for the ultimate stage", J. Build. Eng., 54. https://doi.org/10.1016/j.jobe.2022.104625.
  90. Zhang, H., Zhou, X., Ke, K., Yam, M.C.H., He, X. and Li, H. (2023), "Self-centering hybrid-steel-frames employing energy dissipation sequences: Insights and inelastic seismic demand model", J. Build. Eng., 63, 105451. https://doi.org/10.1016/j.jobe.2022.105451.
  91. Zhou, X., Chen, Y., Ke, K., Yam, M.C.H. and Li, H. (2022), "Hybrid steel staggered truss frame (SSTF): A probabilistic spectral energy modification coefficient surface model for damage-control evaluation and performance insights", J. Build. Eng., 45, 103556. https://doi.org/10.1016/j.jobe.2021.103556.
  92. Zhou, X., Ke, K., Yam, M.C.H., Zhao, Q., Huang, Y. and Di, J. (2021a), "Shape memory alloy plates: Cyclic tension-release performance, seismic applications in beam-to-column connections and a structural seismic demand perspective", Thin. Wall. Struct., 167, 108158. https://doi.org/10.1016/j.tws.2021.108158.
  93. Zhou, X., Zhang, H., Ke, K., Guo, L. and Yam, M.C.H. (2021b), "Damage-control steel frames equipped with SMA connections and ductile links subjected to near-field earthquake motions: A spectral energy factor model", Eng. Struct., 239, 112301. https://doi.org/10.1016/j.engstruct.2021.112301.
  94. Zhou, X., Tan, Y., Ke, K., Yam, M.C.H., Zhang, H. and Xu, J. (2023a), "An experimental and numerical study of brace-type long double C-section steel slit dampers", J. Build. Eng., 64, 105555. https://doi.org/10.1016/j.jobe.2022.105555.
  95. Zhou, X., Huang, Y., Ke, K., Yam, M.C.H., Zhang, H. and Fang, H. (2023b), "Large-size shape memory alloy plates subjected to cyclic tension: Towards novel self-centring connections in steel frames", Thin. Wall. Struct., 185, 110591. https://doi.org/10.1016/j.tws.2023.110591.
  96. Zhou, Z., Ye, B. and Chen, Y. (2019), "Experimental investigation of curved steel knee braces with adjustable yield displacements", J. Constr. Steel Res., 161, 17-30. https://doi.org/10.1016/j.jcsr.2019.06.011.
  97. Zhou, Z., Ke, K., Chen, Y. and Yam, M.C.H. (2022), "High strength steel frames with curved knee braces: Performance-based damage-control design framework", J. Constr. Steel Res., 196, 107392. https://doi.org/10.1016/j.jcsr.2022.107392.
  98. Zhou, Z., Chen, Y., Yam, M.C.H., Ke, K. and He, X. (2023), "Experimental investigation of a high strength steel frame with curved knee braces subjected to extreme earthquakes", Thin. Wall. Struct., 185, 110596. https://doi.org/10.1016/j.tws.2023.110596.