DOI QR코드

DOI QR Code

Surface Modification of Poly(tetrafluoroethylene) (PTFE) Membranes

PTFE 막의 표면 개질 방법

  • Jun Kyu Jang (Department of Energy Engineering, Hanyang University) ;
  • Chaewon Youn (Department of Energy Engineering, Hanyang University) ;
  • Ho Bum Park (Department of Energy Engineering, Hanyang University)
  • 장준규 (한양대학교 에너지공학과) ;
  • 윤채원 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Received : 2023.02.23
  • Accepted : 2023.02.25
  • Published : 2023.02.28

Abstract

In this review, surface modification methods of hydrophobic poly(tetrafluoroethylene) (PTFE) membrane are introduced and their improved hydrophilicity results are discussed. Fluoropolymer based membranes, represented by PTFE membranes have been used in various membrane separation processes, including membrane distillation, oil separation and gas separation. However, despite excellent physical properties such as chemical resistance, heat resistance and high mechanical strength, the strong hydrophobicity of PTFE membrane surface has become a challenging factor in expanding its membrane separation application. To improve the separation performance of PTFE membranes, wet chemical, hydrophilic coating, plasma, irradiation and atomic layer deposition are applied, modifying the surface property of PTFE membranes while maintaining their inherent properties.

본 총설은 소수성 불소수지계 분리막의 표면 개질에 대한 개론으로 다양한 표면 개질 방법 및 그 연구 결과를 중점적으로 서술하였다. PTFE로 대표되는 불소수지계 고분자 분리막은 막 증류, 유수 분리, 기체 분리를 포함한 다양한 막 분리 공정에서 사용되어왔다. PTFE 막은 내화학성, 내열성, 높은 기계적 강도와 같은 뛰어난 물성에도 불구하고 소수성 표면 특성으로 인해 기술 적용의 확장에 제한적이다. 친수성 향상을 위해 습식 화학법, 친수성 고분자 코팅, 플라즈마 처리, 조사, 원자층 증착과 같은 다양한 PTFE 표면 개질 방법을 이용하며 이를 통해 불소수지계 분리막의 응용분야가 확장될 수 있다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 산하 한국산업기술평가관리원(KEIT)의 지원으로 수행되었습니다(No. 20013583).

References

  1. U. UNESCO, "The united nations world water development report 2017, wastewater: The untapped resource", UNESCO, Italy (2017). 
  2. H. M. Song, H. W. Yu, L. J. Zhu, L. X. Xue, D. C. Wu, and H. Chen, "Durable hydrophilic surface modification for PTFE hollow fiber membranes", React. Funct. Polym, 114, 110-117 (2017).  https://doi.org/10.1016/j.reactfunctpolym.2017.03.010
  3. C. L. Fu, S. L. Liu, T. L. Gong, A. Q. Gu, and Z. L. Yu, "Investigation on surface structure of potassium permanganate/nitric acid treated poly(tetrafluoroethylene)", Appl. Surf. Sci., 317, 771-775 (2014).  https://doi.org/10.1016/j.apsusc.2014.08.176
  4. S. F. Wang, J. Li, J. P. Suo, and T. Z. Luo, "Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment", Appl. Surf. Sci., 256, 2293-2298 (2010).  https://doi.org/10.1016/j.apsusc.2009.10.055
  5. M. Gabriel, M. Dahm, and C. F. Vahl, "Wet-chemical approach for the cell-adhesive modification of polytetrafluoroethylene", Biomed. Mater., 6, 035007 (2011). 
  6. H. Brecht, F. Mayer, and H. Binder, "Esca studies on etched polytetrafluoroethylene films", Angew. Makromol. Chem, 33, 89-100 (1973).  https://doi.org/10.1002/apmc.1973.050330106
  7. J. H. Jiang, L. P. Zhu, L. J. Zhu, B. K. Zhu, and Y. Y. Xu, "Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films", Langmuir, 27, 14180-14187 (2011).  https://doi.org/10.1021/la202877k
  8. Z. Y. Xi, Y. Y. Xu, L. P. Zhu, Y. Wang, and B. K. Zhu, "A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine)", J. Membr. Sci., 327, 244-253 (2009).  https://doi.org/10.1016/j.memsci.2008.11.037
  9. H. W. Kim and H. B. Park, "Gas transport behavior of polydopamine-coated composite membranes", Membr. J., 23, 136-143 (2013). 
  10. K. P. Wang, D. Y. Hou, J. Wang, Z. X. Wang, B. H. Tian, and P. Liang, "Hydrophilic surface coating on hydrophobic PTFE membrane for robust anti-oil-fouling membrane distillation", Appl. Surf. Sci., 450, 57-65 (2018).  https://doi.org/10.1016/j.apsusc.2018.04.180
  11. S.-M. Ahn, B.-J. Chang, J.-H. Kim, Y.-T. Lee, and S.-B. Lee, "Pervaporation separation of fluoroethanol/water mixtures through crosslinked poly (vinyl alcohol) composite membranes", Membr. J., 14, 166-172 (2004). 
  12. K.-J. Kim, S.-B. Lee, and N.-W. Han, "Kinetics of crosslinking reaction of PVA membrane with glutaraldehyde", Korean J. Chem. Eng., 11, 41-47 (1994).  https://doi.org/10.1007/BF02697513
  13. I. N. Floros, E. P. Kouvelos, G. I. Pilatos, E. P. Hadjigeorgiou, A. D. Gotzias, E. P. Favvas, and A. A. Sapalidis, "Enhancement of flux performance in PTFE membranes for direct contact membrane distillation", Polymers(Basel), 12, 345 (2020). 
  14. S. Y. Park, J. W. Chung, and S. Y. Kwak, "Regenerable anti-fouling active PTFE membrane with thermo-reversible "peel-and-stick" hydrophilic layer", J. Membr. Sci., 491, 1-9 (2015).  https://doi.org/10.1016/j.memsci.2015.05.007
  15. P. Esena, S. Zanini, and C. Riccardi, "Plasma processing for surface optical modifications of PET films", Vacuum, 82, 232-235 (2007).  https://doi.org/10.1016/j.vacuum.2007.07.054
  16. E. Carbone, M. Verhoeven, W. Keuning, and J. van der Mullen, "PTFE treatment by remote atmospheric Ar/O2 plasmas: a simple reaction scheme model proposal", J. Phys. Conf. Ser., 715, 012011 (2016). 
  17. D. V. Bax, Y. Wang, Z. Li, P. K. Maitz, D. R. McKenzie, M. M. Bilek, and A. S. Weiss, "Binding of the cell adhesive protein tropoelastin to PTFE through plasma immersion ion implantation treatment", Biomaterials, 32, 5100-5111 (2011).  https://doi.org/10.1016/j.biomaterials.2011.03.079
  18. N. Vandencasteele and F. Reniers, "Surface characterization of plasma-treated PTFE surfaces: an OES, XPS and contact angle study", Surf. Interface Anal., 36, 1027-1031 (2004).  https://doi.org/10.1002/sia.1829
  19. C. Jie-Rong and T. Wakida, "Studies on the surface free energy and surface structure of PTFE film treated with low temperature plasma", J. Appl. Polym. Sci., 63, 1733-1739 (1997).  https://doi.org/10.1002/(SICI)1097-4628(19970328)63:13<1733::AID-APP4>3.0.CO;2-H
  20. S. Feng, Z. Zhong, Y. Wang, W. Xing, and E. Drioli, "Progress and perspectives in PTFE membrane: Preparation, modification, and applications", J. Membr. Sci., 549, 332-349 (2018).  https://doi.org/10.1016/j.memsci.2017.12.032
  21. H.-H. Chien, K.-J. Ma, C.-H. Kuo, and S.-W. Huang, "Effects of plasma power and reaction gases on the surface properties of ePTFE materials during a plasma modification process", Surf. Coat. Technol., 228, S477-S481 (2013).  https://doi.org/10.1016/j.surfcoat.2012.05.014
  22. H. Xu, Z. Hu, S. Wu, and Y. Chen, "Surface modification of polytetrafluoroethylene by microwave plasma treatment of H2O/Ar mixture at low pressure", Mater. Chem. Phys., 80, 278-282 (2003).  https://doi.org/10.1016/S0254-0584(02)00490-X
  23. C. Liu, J. Wu, L. Ren, J. Tong, J. Li, N. Cui, N. Brown, and B. Meenan, "Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification", Mater. Chem. Phys., 85, 340-346 (2004).  https://doi.org/10.1016/j.matchemphys.2004.01.026
  24. Z. Fang, L. Hao, H. Yang, X. Xie, Y. Qiu, and K. Edmund, "Polytetrafluoroethylene surface modification by filamentary and homogeneous dielectric barrier discharges in air", Appl. Surf. Sci., 255, 7279-7285 (2009).  https://doi.org/10.1016/j.apsusc.2009.03.078
  25. M. Ryan and J. Badyal, "Surface texturing of PTFE film using nonequilibrium plasmas", Macromolecules, 28, 1377-1382 (1995).  https://doi.org/10.1021/ma00109a008
  26. N. Vandencasteele, B. Nisol, P. Viville, R. Lazzaroni, D. G. Castner, and F. Reniers, "Plasma-modified PTFE for biological applications: correlation between protein-resistant properties and surface characteristics", Plasma Process Polym., 5, 661-671 (2008).  https://doi.org/10.1002/ppap.200700143
  27. M. Morra, E. Occhiello, and F. Garbassi, "Contact angle hysteresis in oxygen plasma treated poly (tetrafluoroethylene)", Langmuir, 5, 872-876 (1989).  https://doi.org/10.1021/la00087a050
  28. P. K. Chu, J. Chen, L. Wang, and N. Huang, "Plasma-surface modification of biomaterials", Mat. Sci. Eng. R., 36, 143-206 (2002).  https://doi.org/10.1016/S0927-796X(02)00004-9
  29. S. Wu, E. Kang, K. Neoh, H. Han, and K. Tan, "Surface modification of poly (tetrafluoroethylene) films by graft copolymerization for adhesion improvement with evaporated copper", Macromolecules, 32, 186-193 (1999).  https://doi.org/10.1021/ma9803133
  30. C.-Y. Tu, Y.-L. Liu, K.-R. Lee, and J.-Y. Lai, "Surface grafting polymerization and modification on poly (tetrafluoroethylene) films by means of ozone treatment", Polymer, 46, 6976-6985 (2005).  https://doi.org/10.1016/j.polymer.2005.05.116
  31. S. Turmanova, M. Minchev, K. Vassilev, and G. Danev, "Surface grafting polymerization of vinyl monomers on poly (tetrafluoroethylene) films by plasma treatment", J. Polym. Res., 15, 309-318 (2008).  https://doi.org/10.1007/s10965-007-9172-0
  32. T. Shi, M. Shao, H. Zhang, Q. Yang, and X. Shen, "Surface modification of porous poly (tetrafluoroethylene) film via cold plasma treatment", Appl. Surf. Sci., 258, 1474-1479 (2011).  https://doi.org/10.1016/j.apsusc.2011.09.110
  33. A. Lin, S. Shao, H. Li, D. Yang, and Y. Kong, "Preparation and characterization of a new negatively charged polytetrafluoroethylene membrane for treating oilfield wastewater", J. Membr. Sci., 371, 286-292 (2011).  https://doi.org/10.1016/j.memsci.2011.01.052
  34. L. Ji, E. Kang, K. Neoh, and K. Tan, "Oxidative graft polymerization of aniline on PTFE films modified by surface hydroxylation and silanization", Langmuir, 18, 9035-9040 (2002).  https://doi.org/10.1021/la0260483
  35. Q. Zhang, C. Wang, Y. Babukutty, T. Ohyama, M. Kogoma, and M. Kodama, "Biocompatibility evaluation of ePTFE membrane modified with PEG in atmospheric pressure glow discharge", J. Biomed. Mater. Res., 60, 502-509 (2002).  https://doi.org/10.1002/jbm.1294
  36. M. Zhang, E. Kang, K. Neoh, and K. Tan, "Consecutive graft copolymerization of glycidyl methacrylate and aniline on poly (tetrafluoroethylene) films", Langmuir, 16, 9666-9672 (2000).  https://doi.org/10.1021/la000568l
  37. C. Huang, W. C. Ma, C.-Y. Tsai, W.-T. Hou, and R.-S. Juang, "Surface modification of polytetrafluoroethylene membranes by radio frequency methane/nitrogen mixture plasma polymerization", Surf. Coat. Technol., 231, 42-46 (2013).  https://doi.org/10.1016/j.surfcoat.2012.03.005
  38. C. Wang and J.-R. Chen, "Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation", Appl. Surf. Sci., 253, 4599-4606 (2007).  https://doi.org/10.1016/j.apsusc.2006.10.014
  39. M.-R. Yang and K.-S. Chen, "Wettability and lubrication of polytetrafluorethylene (PTFE) by UV-induced graft copolymerization on plasma-treated surface", Mater. Chem. Phys., 50, 11-14 (1997).  https://doi.org/10.1016/S0254-0584(97)80176-9
  40. E. Adem, M. Avalos-Borja, E. Bucio, G. Burillo, F. Castillon, and L. Cota, "Surface characterization of binary grafting of AAc/NIPAAm onto poly (tetrafluoroethylene)(PTFE)", Nucl. Instrum. Methods Phys. Res. B, 234, 471-476 (2005).  https://doi.org/10.1016/j.nimb.2005.02.009
  41. L. Calcagno, G. Compagnini, and G. Foti, "Structural modification of polymer films by ion irradiation", Nucl. Instrum. Methods Phys. Res. B, 65, IN7-422 (1992).  https://doi.org/10.1016/0168-583X(92)95077-5
  42. J. Colwell, E. Wentrup-Byrne, J. Bell, and L. Wielunski, "A study of the chemical and physical effects of ion implantation of micro-porous and nonporous PTFE", Surf. Coat. Technol., 168, 216-222 (2003).  https://doi.org/10.1016/S0257-8972(03)00204-4
  43. M. Lewis and E. Lee, "Residual gas and ion-beam analysis of ion-irradiated polymers", Nucl. Instrum. Methods Phys. Res. B, 61, 457-465 (1991).  https://doi.org/10.1016/0168-583X(91)95323-6
  44. N. M. Hidzir, Q. Lee, D. J. Hill, F. Rasoul, and L. Grondahl, "Grafting of acrylic acid-co-itaconic acid onto ePTFE and characterization of water uptake by the graft copolymers", J. Appl. Polym. Sci., 132, 41482-41494 (2015). 
  45. H. Yamagishi, J. V. Crivello, and G. Belfort, "Development of a novel photochemical technique for modifying poly (arylsulfone) ultrafiltration membranes", J. Membr. Sci., 105, 237-247 (1995).  https://doi.org/10.1016/0376-7388(95)00063-I
  46. B. Kaeselev, J. Pieracci, and G. Belfort, "Photoinduced grafting of ultrafiltration membranes: comparison of poly (ether sulfone) and poly (sulfone)", J. Membr. Sci., 194, 245-261 (2001).  https://doi.org/10.1016/S0376-7388(01)00544-0
  47. K. Lunkwitz, U. Lappan, and D. Lehmann, "Modification of fluoropolymers by means of electron beam irradiation", Radiat. Phys. Chem., 57, 373-376 (2000).  https://doi.org/10.1016/S0969-806X(99)00407-7
  48. Z.-Y. Xi, Y.-Y. Xu, L.-P. Zhu, and B.-K. Zhu, "Modification of polytetrafluoroethylene porous membranes by electron beam initiated surface grafting of binary monomers", J. Membr. Sci., 339, 33-38 (2009).  https://doi.org/10.1016/j.memsci.2009.04.025
  49. S. M. George, "Atomic layer deposition: an overview", Chem. Rev., 110, 111-131 (2010).  https://doi.org/10.1021/cr900056b
  50. M. Kemell, E. Farm, M. Ritala, and M. Leskela, "Surface modification of thermoplastics by atomic layer deposition of Al2O3 and TiO2 thin films", Eur. Polym. J., 44, 3564-3570 (2008).  https://doi.org/10.1016/j.eurpolymj.2008.09.005
  51. Q. Xu, Y. Yang, X. Wang, Z. Wang, W. Jin, J. Huang, and Y. Wang, "Atomic layer deposition of alumina on porous polytetrafluoroethylene membranes for enhanced hydrophilicity and separation performances", J. Membr. Sci., 415, 435-443 (2012). 
  52. S. Xiong, L. Kong, Z. Zhong, and Y. Wang, "Dye adsorption on zinc oxide nanoparticulates atomic-layer-deposited on polytetrafluoroethylene membranes", AIChE. J., 62, 3982-3991 (2016). https://doi.org/10.1002/aic.15293