DOI QR코드

DOI QR Code

The Enhanced Electrochemical Performance of Lithium Metal Batteries through the Piezoelectric Protective Layer

압전 특성의 보호층을 통한 리튬 금속 전지의 전기화학적 특성 개선

  • Dae Ung Park (Department of Chemical Engineering, Kwangwoon University) ;
  • Weon Ho Shin (Department of Electronic Material Engineering, Kwangwoon University) ;
  • Hiesang Sohn (Department of Chemical Engineering, Kwangwoon University)
  • 박대웅 (광운대학교 화학공학과) ;
  • 신원호 (광운대학교 전자재료공학과) ;
  • 손희상 (광운대학교 화학공학과)
  • Received : 2022.12.21
  • Accepted : 2022.12.29
  • Published : 2023.02.28

Abstract

Despite high capacity of lithium metal anode, its uncontrollable dendrite growth results in the poor electrochemical (EC) performance (low Coulomb efficiency and limited cycle stability) and unsafe operation. In this study, we demonstrated a lithium metal anode protected with BaTiO3/PVDF based piezoelectric layer to enhance its EC performance by utilizing the locally polarized lithium metal after volume expansions. As-formed lithium metal electrode deposited with BTO@PVDF layer exhibited an enhanced Coulombic efficiency (> 98% for 100 cycles) and facilitated lithium ion diffusions (lithium diffusion coefficient: DLi+), revealing the effectiveness of piezoelectric layer deposited lithium metal electrode approach.

리튬 금속 기반 전극의 높은 용량에도 불구하고, 제어가 어려운 덴드라이트 성장은 낮은 쿨롱 효율, 안전 문제를 야기해, 리튬금속 배터리의 상용화를 제한한다. 본 연구에서는 압전 복합체인 BaTiO3/PVDF (BTO@PVDF) 기반 보호층을 리튬금속에 코팅, 덴드라이트에 의한 부피팽창으로 발생한 변형을 분극을 이용하여, 리튬 금속 전극의 안정성 및 성능을 향상하고자 한다. 이를 통해, 균일한 리튬이온의 증착이 가능해졌으며, BTO@PVDF 전극은 100 사이클 동안 약 98.1% 이상의 쿨롱 효율을 나타내었다. 또한, CV를 통해 향상된 리튬이온의 확산계수(DLi+) 증가를 보였으며, 본 연구에서 제시된 전략은 리튬 금속 전극의 성능 향상에 새로운 길을 나타내준다.

Keywords

Acknowledgement

The present research has been conducted by the Research Grant of Kwangwoon University in 2021. This research was supported by the Nano-Material Technology Development Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning (2009-0082580). It was also supported by an NRF grant funded by the Korean government (MSIT) (No. NRF-2020R1F1A1065536) and Korea Electric Power Corporation (KEPCO) (No. 2022-0909).

References

  1. F. Dai, R. Yi, H. Yang, Y. Zhao, L. Luo, M. L. Gordin, H. Sohn, S. Chen, C. Wang, S. Zhang, and D. Wang, "Minimized volume expansion in hierarchical porous silicon upon lithiation", ACS Appl. Mater. Interfaces, 11, 13257 (2019).
  2. H. Sohn, D. H. Kim, R. Yi, D. Tang, S. E. Lee, Y. S. Jung, and D. Wang, "Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries", J. Power Sources, 334, 128 (2016).
  3. D. Y. Oh, Y. E. Choi, Y. G. Lee, J. N. Park, H. Sohn, and Y. S. Jung, "All-solid lithium-ion batteries with TiS2 nanosheet and sulfide solid electrolytes", J. Mater. Chem. A, 4, 10329 (2016).
  4. Q. Xiao, H. Sohn, Z. Chen, D. Toso, M. Mecklenburg, Z. H. Zhou, E. Poirier, A. Dailly, H. Wang, Z. Wu, M. Cai, and Y. Lu, "Mesoporous metal and metal alloy particles synthesized by aerosol-assisted confined growth of nanocrystals", Angew. Chem. Int. Ed., 51, 10546 (2012).
  5. G. Eshetu, H. Zhang, X. Judez, H. Adenusi, M. Armand, S. Passerini, and E. Figgemeier, "Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes", Nature Commun., 12, 5459
  6. Y. Ding, Z. Cano, A. Yu, J. Lu, and Z. Chen, "Automotive Li-Ion batteries: current status and future perspectives", Electrochem. Energ., 2, 1 (2019).
  7. S. Kim, "Recent developments in anode materials for Li secondary batteries", J. Kor. Electrochem. Soc., 3, 211 (2008).
  8. S. Sivakkumar, J. Nerkar, and A. Pandolfo, "Rate capability of graphite materials as negative electrodes in lithium-ion capacitors", Electrochim. Acta, 55, 3330 (2010).
  9. P. Guo, H. Song, and X. Chen, "Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries", Electrochem. Commun., 11, 1320 (2009).
  10. J. Lim, J. Won, M. Kim, D. Jung, M. Kim, S. Koo, J. Oh, H. Jeong, H. Sohn, W. Shin, and C. Park, "Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage", J. Mater. Chem. A, 10, 7668 (2022).
  11. Y. Jeong, J. Park, S. Lee, S. H. Oh, W. J. Kim, Y. J. Ji, G. Y. Park, D. Seok, W. Shin, J. Oh, T. Lee, C. Park, A. Seubsaic, and H. Sohn, "Iron oxide-carbon nanocomposites modified by organic ligands: Novel pore structure design of anode materials for lithium-ion batteries", J. Elec. Anal. Chem., 904, 115905 (2022).
  12. K. Hwang, N. Kim, Y. Jeong, H. Sohn, and S. Yoon, "Controlled nanostructure of a graphene nanosheet-TiO2 composite fabricated via mediation of organic ligands for high-performance Li storage applications", Int. J. Energy Res., 45, 16189
  13. D. Seok, W. Shin, S. Kang, and H. Sohn, "Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility", J. Alloys Comp., 870, 159267
  14. M. Kim, D. Ko, J. Kim, E. Cho, D. Yang, C. Kwak, and H. Sohn, "Silver nanowires network film with enhanced crystallinity toward mechano-electrically sustainable flexible-electrode", Adv. Mater. Inter., 6, 2000838 (2020).
  15. H. Sohn, W. Shin, D. Seok, T. Lee, C. Park, J. Oh, S. Kim, and A. Seubsai, "Novel hybrid conductor of irregularly patterned graphene mesh and silver nanowire networks", Micromachines, 11, 578 (2020).
  16. D. Seok, Y. Kim, and H. Sohn, "Synthesis of Fe3O4/porous carbon composite for efficient Cu2+ ions removal", Membr. J., 29, 308 (2019).
  17. D. Seok, Y. Jeong, K. Han, D. Yoon, and H. Sohn, "Recent progress of electrochemical energy devices: Metal oxide-carbon nanocomposites as materials for next-generation chemical storage for renewable energy", Sustainability, 11, 3694 (2019).
  18. H. Sohn, Q. Xiao, A. Seubsai, Y. Ye, J. Lee, H. Han, S. Park, G. Chen, and Y. Lu, "Thermally robust porous bimetallic (NixPt1-x) alloy particles within carbon framework: High-performance catalysts for hydrogenation reaction and oxygen reduction reaction", ACS Appl. Mater. Interfaces, 11, 21435 (2019).
  19. K. Hwang, H. Sohn, and S. Yoon, "Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries", J. Power Sources, 378, 225 (2018).
  20. H. Sohn, S. Kim, W. Shin, J. Lee, K. Moon, H. Lee, D. Yun, I. Han, C. Kwak, and S. Hwang, "Novel flexible transparent conductive films with enhanced chemical and electro-mechanical sustainability: TiO2 nanosheet-Ag nanowire hybrid", ACS Appl. Mater. Interfaces, 10, 2688 (2018).
  21. K. Kisu, S. Kim, T. Shinohara, K. Zhao, A. Zuttel, and S. Orimo, "Monocarborane cluster as a stable fluorine-free calcium battery electrolyte", Sci. Rep., 11, 7563
  22. L. Liu, Y. Yin, J. Li, N. Li, X. Zeng, H. Ye, Y. Guo, and L. Wan, "Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes", Joule, 1, 563 (2017).
  23. P. G. Bruce, S. A. Freunberger, L. Hardwick, and J. Tarascon, "Li-O2 and Li-S batteries with high energy storage", Nature Mater., 11, 19 (2012).
  24. X. Liang, Q. Pang, I. Kochetkov, M. Sempere, H. Huang, X. Sun, and L. Nazar, "A facile surface chemistry route to a stabilized lithium metal anode", Nature Energy, 2, 17119 (2017).
  25. N. Xu, L. Li, Y. He, Y. Tong, and Y. Lu, "Understanding the molecular mechanism of lithium deposition for practical high-energy lithium-metal batteries", J. Mater. Chem. A, 8, 6229 (2020).
  26. A. Pei, G. Zheng, F. Shi, Y. Li, and Y. Cui, "Nanoscale nucleation and growth of electrodeposited lithium metal", Nano Lett., 17, 1132 (2017).
  27. C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, Z. Lee, M. Lee, J. Alvarado, M. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang, and Y. Meng, "Quantifying inactive lithium in lithium metal batteries", Nature, 572, 511 (2019).
  28. H. Zhou, S. Yu, H. Liu, and P. Liu, "Protective coatings for lithium metal anodes: recent progress and future perspectives", J. Power Sources, 450, 227632 (2020).
  29. X. Cheng, C. Zhao, Y. Yao, H. Liu, and Q. Zhang, "Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes", Chem., 5, 74 (2019).
  30. D. Lin, Y. Liu, Z. Liang, H. Lee, W. Sun, J. Wang, H. Yan, J. Xie, and Y. Cui, "Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes", Nature Nanotechnol., 11, 626 (2016).
  31. S. Liu, A. Wang, Q. Li, J. Wu, K. Chio, J. Huang, and J. Luo, "Crumpled graphene balls stabilized dendrite-free lithium metal anodes", Joule, 2, 184 (2018).
  32. R. Zhang, X. Cheng, C. Zhao, H. Peng, J. Shi,, J. Huang, J. Wang, F. Wei, and Q. Zhang, "Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth", Adv. Mater., 28, 2155 (2016).
  33. C. Yang, Y. Yin, S. Zhang, N. Li, and Y. G. Guo, "Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes", Nature Commun., 6, 8058 (2015).
  34. Q. Li, S. Zhu, and Y. Lu, "3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries", Adv. Mater., 27, 1606422 (2017).
  35. W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y. Chiang, and Y. Cui, "The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth", Nature Commun., 6, 7436 (2015).
  36. X. Cheng, R. Zhang, C. Zhao, and Q. Zhang, "Toward safe lithium metal anode in rechargeable batteries: A review", Chem. Rev., 117, 10403 (2017).
  37. Y. Gao, Z. Yan, J. Gray, X. He, D. Wang, T. Chen, Q. Huang, Y. Li, H. Wang, S. Kim, T. Mallouk, and D. Wang, "Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions", Nature Mater., 18, 384 (2019).
  38. D. Lin, Y. Liu, and Y. Cui, "Reviving the lithium metal anode for high-energy batteries", Nature Nanotechnol., 12, 194 (2017).
  39. X. Zhang, X. Cheng, and Q. Zhang, "Advances in interfaces between Li metal anode and electrolyte", Adv. Mater. Interfaces., 5, 1701097 (2018).
  40. X. Cheng, R. Zhang, C. Zhao, and Q. Zhang, "Toward safe lithium metal anode in rechargeable batteries: A review", Chem. Rev., 117, 10403 (2018).
  41. S. Lee, S. Choi, J. Hyun, D. Kim, Y. Park, J. Yu, S. Jeon, J. Park, W. Shin, and H. Sohn, "Nanostructured PVdF-HFP/TiO2 composite as protective layer on lithium metal battery anode with enhanced electrochemical performance", Membr. J., 31, 417
  42. S. Lee, D. Seok, Y. Jeong, and H. Sohn, "Surface modification of Li metal electrode with PDMS/GO composite thin film: controlled growth of Li layer and improved performance of lithium metal battery (LMB)", Membr. J., 30, 38 (2020).
  43. Y. Jeong, D. Seok, S. Lee, W. Shin, and H. Sohn, "Polymer/inorganic nanohybrid membrane on lithium metal electrode: Effective control of surficial growth of lithium layer and its improved electrochemical performance", Membr. J., 30, 30 (2020).
  44. J. Xiang, Z. Cheng, Y. Zhao, B. Zhang, L. Yuan, Y. Shen, Z. Guo, Y. Zhang, J. Jiang, and Y. Huang, "A lithium-ion pump based on piezoelectric effect for improved rechargeability of lithium metal anode", Adv. Sci., 6, 1901120 (2019).
  45. L. Lu, W. Ding, J. Liu, and B. Yang, "Flexible PVDF based piezoelectric nanogenerators", Nano Energy, 78, 105251 (2020).
  46. Y. Yang, W. Guo, Y. Zhang, Y. Ding, X. Wang, and Z. Wang, "Piezotronic effect on the output voltage of P3HT/ZnO micro/nanowire heterojunction solar cells", Nano Lett., 11, 4812 (2011).
  47. S. Shin, Y. Kim, M. Lee, J. Jung, and J. Nah, "Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator", ACS Nano, 8, 2766 (2014).
  48. Y. Zhao, Q. Liao, G. Zhang, Z. Zhang, Q. Liang, X. Liao, and Y. Zhang, "Highoutput piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF", Nano Energy, 11, 719 (2015).
  49. J. Fu, Y. Hou, X,. Gao, M. Zheng, and M. Zhu, "Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi3O5 nanorods with high power density", Nano Energy, 52, 391 (2018).
  50. Mokhtari, F. Spinks, G. Fay, C. Cheng, Z. Raad, R. Xi, and J. Foroughi, "Wearable electronic textiles from nanostructured piezoelectric fibers", Adv. Mater. Technol., 5, 1900900 (2020).
  51. W. Li-zhu, Z. Chang-song, W. Chu, and W. Ru-peng, "The preparation of PVDF-BTO composite film and the influence of polarization intensity on the piezoelectric properties of composite film", J. Appl. Phys., 1948, 012191
  52. X. Guan, B. Xu, and J. Gong, "Hierarchically architected polydopamine modified BaTiO3@P(VDFTrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors", Nano Energy, 70, 104516 (2020).
  53. Y. Wu, G. Wang, Z. Jiao, Y. Fan, P. Peng, and X. Dong, "High electrostrictive properties and energy storage performances with excellent thermal stability in Nb-doped Bi0.5Na0.5TiO3-based ceramics", RSC Adv., 9, 21355 (2019).
  54. Martins P, Lopes, and A. Lanceros-Mendez, "Electroactive phases of poly(vinylidene fluoride): determination, processing and applications", Prog. Polym. Sci., 39, 683 (2014).
  55. V. Cardoso, F. Catarino, S. Serrado Nunes, J. Rebouta, L. Rocha, J. Lanceros-Mendez, and S. Minas, "Lab-on-a-chip with beta-poly(vinylidene fluoride) based acoustic microagitation", IEEE. Trans. Biomed. Eng., 57, 1184 (2010).
  56. V. Cardoso, G. Minas, C. Costa, C. Tavares, and S. Lanceros-Mendez, "Micro and nanofilms of poly(vinylidene fluoride) with controlled thickness, morphology and electroactive crystalline phase for sensor and actuator applications", Smart Mater. Struct., 20, 087002 (2011).
  57. P. Sajkiewicz, A. Wasiak. and Z. Goclowski, "Phase transitions during stretching of poly(vinylidene fluoride)", Eur. Polym. J., 35, 423 (1999).
  58. I. Wan, X. Zhang, Z. Liu, J. Zhang, Z. Li, Z. Lin Wang, and L. Li, "Noninvasive manipulation of cell adhesion for cell harvesting with piezoelectric composite film", Appl. Mater. Today, 25, 101218 (2021).
  59. T. Gao, C. Rainey, and W. Lu, "Piezoelectric mechanism and a compliant film to effectively suppress dendrite growth", ACS Appl. Mater. Interfaces, 12, 51448 (2020)
  60. X. Gao, Y. Zhou, D. Han, J. Zhou, D. Zhou, W. Tang, and J. Goodenough, "Thermodynamic understanding of Li-dendrite formation", Joule, 4, 1864 (2020).
  61. A. Pei, G. Zheng, F. Shi, Y. Li, and Y. Cui, "Nanoscale nucleation and growth of electrodeposited lithium metal", Nano Lett., 17, 1132 (2017).
  62. S. Xia, Y. Zhao, J. Yan, J. Yu, and B. Ding, "Dynamic regulation of lithium dendrite growth with electromechanical coupling effect of soft BaTiO3 ceramic nanofiber films", ACS Nano, 15, 3161 (2021).