DOI QR코드

DOI QR Code

Virulence factors and antimicrobial resistance patterns of pathogenic Escherichia coli isolated from fecal samples of piglets

자돈 분변 유래 병원성 대장균의 병원성 인자 및 항생제 내성 양상

  • Hyun Sook Shin (Bacterial Disease Division, Animal and Plant Quarantine Agency) ;
  • Keun-Ho Kim (Bacterial Disease Division, Animal and Plant Quarantine Agency) ;
  • Jin Sung Seo (Bacterial Disease Division, Animal and Plant Quarantine Agency) ;
  • Young Wook Kim (Bacterial Disease Division, Animal and Plant Quarantine Agency) ;
  • Suk-Kyung Lim (Bacterial Disease Division, Animal and Plant Quarantine Agency) ;
  • Byeong Yeal Jung (Bacterial Disease Division, Animal and Plant Quarantine Agency)
  • 신현숙 (농림축산검역본부 세균질병과) ;
  • 김근호 (농림축산검역본부 세균질병과) ;
  • 서진성 (농림축산검역본부 세균질병과) ;
  • 김영욱 (농림축산검역본부 세균질병과) ;
  • 임숙경 (농림축산검역본부 세균질병과) ;
  • 정병열 (농림축산검역본부 세균질병과)
  • Received : 2023.02.16
  • Accepted : 2023.03.16
  • Published : 2023.03.30

Abstract

Pathogenic Escherichia coli is the cause of a wide range of diseases in pigs, including diarrhea, edema disease, and septicemia. Diarrhea caused E. coli may result in significant economic losses, making pathogenic E. coli an important pathogen for the swine industry. This study investigated the prevalence of virulence factor genes, antimicrobial resistance phenotypes, and resistance genes in E. coli isolated from feces of piglets in Korea between 2017 and 2020. As a result, 119 pathogenic E. coli isolates were obtained from 601 fecal samples. The F4 adhesin gene and the STb enterotoxin gene were commonly present in E. coli isolated from diarrhea samples. The dominant virulotypes of isolates from diarrhea samples were STb, Stx2e, and F4:LT:STb. More than 80% of the screened isolates were resistant to ampicillin, sulfisoxazole, chloramphenicol, or tetracycline. To confirm the resistance mechanisms for β-lactam or quinolone, we investigated the genotypic factors of resistance. Each of the ceftiofur-resistant E. coli produced an extended-spectrum β-lactamase encoded by blaCTX-M-14, blaCTX-M-27, and blaCTX-M-55. And all ciprofloxacin-resistant E. coli harbored mutations in quinoloneresistance-determining-regions. In addition, some of the ciprofloxacin-resistant E. coli contained the plasmid-mediated-quinolone-resistance genes such as qepA, qnrB1, or qnrD. This study has confirmed that the F4 fimbria and the STb enterotoxin are the most predominant in pathogenic E. coli isolated from piglets with diarrhea in Korea and there is a great need for responsible and prudent use of antimicrobials to treat colibacillosis.

Keywords

Acknowledgement

본연구는 농림축산검역본부의 농림축산검역검사기술개발사업(B-1543081-2021-23-01)의 연구비 지원에 의해 수행되었다.

References

  1. 관계부처 합동. 2021. 국가 항생제 내성 관리대책(2021-2025). http://www.mohw.go.kr/re.
  2. 농림축산검역본부. 2020. 돼지 항생제 처방 가이드라인.
  3. 식품의약품안전평가원, 농림축산식품부, 농림축산검역본부, 한국동물약품협회. 2021. 2020년도 국가 항생제 사용 및 내성 모니터링-동물, 축산물-보고서.
  4. Bevan ER, Jones AM, Hawkey PM. 2017. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 72: 2145-2155. https://doi.org/10.1093/jac/dkx146
  5. Brand P, Gobeli S, Perreten V. 2017. Pathotyping and antibiotic resistance of porcine enterovirulent Escherichia coli strains from Switzerland (2014~2015). Schweiz Arch Tierheilkd 159: 373-380. https://doi.org/10.17236/sat00120
  6. Branger C, Zamfir O, Geoffroy S, Laurans G, Arlet G, Thien HV, Gouriou S, Picard B, Denamur E. 2005. Genetic background of Escherichia coli and extended-spectrum beta-lactamase type. Emerg Infect Dis 11: 54-61. https://doi.org/10.3201/eid1101.040257
  7. Byun JW, Jung BY, Kim HY, Fairbrother JM, Lee MH, Lee WK. 2013. O-serogroups, virulence genes of pathogenic Escherichia coli and Pulsed-field gel electrophoresis (PFGE) patterns of O149 isolates from diarrhoeic piglets in Korea. Vet Med-Czech 58: 468-476. https://doi.org/10.17221/7031-VETMED
  8. Canton R, Gonzalez-Alba JM, Galan JC. 2012. CTX-M Enzymes: origin and diffusion. Front Microbiol 3:110.
  9. Cattoir V, Poirel L, Nordmann P. 2008. Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob Agents Chemother 52: 3801-4. https://doi.org/10.1128/AAC.00638-08
  10. Do KH, Byun JW, Lee WK. 2020. Virulence and antimicrobial resistance genes of pathogenic Escherichia coli from piglets showing diarrhea before and after ban on antibiotic growth promoters in feed. Korean J vet Res 60: 163-171. https://doi.org/10.14405/kjvr.2020.60.3.163
  11. Dubreuil JD, Isaacson RE, Schifferli DM. 2016. Animal enterotoxigenic Escherichia coli. EcoSal Plus 7: 10.
  12. Grabowski L, Gaffke L, Pierzynowska K, Cyske Z, Choszcz M, Wegrzyn G, Wegrzyn A. 2022. Enrofloxacinthe ruthless killer of eukaryotic cells or the last hope in the fight against bacterial infections. Int J Mol Sci 23: 3648.
  13. Hayer SS, Casanova-Higes A, Paladino E, Elnekave E, Nault A, Johnson T, Bender J, Perez A, Alvarez J. 2022. Global distribution of fluoroquinolone and colistin resistance and associated resistance markers in Escherichia coli of swine origin - A systematic review and meta-analysis. Front Microbiol 13: 834793.
  14. Heaton KW, Lewis SJ. 1997. Stool form scale as a useful guide to intestinal transit time. Scandinavian Journal of Gastroenterology 32: 920-924. Retrieved on 2/3/2007. https://doi.org/10.3109/00365529709011203
  15. Hu YS, Shin S, Park YH, Park KT. 2017. Prevalence and mechanism of fluoroquinolone resistance in Escherichia coli isolated from swine feces in Korea. J Food Prot 80: 1145-1151. https://doi.org/10.4315/0362-028X.JFP-16-502
  16. Ikwap K, Larsson J, Jacobson M, Owiny DO, Nasinyama GW, Nabukenya I, Mattsson S, Aspan A, Erume J. 2016. Prevalence of adhesin and toxin genes in E. coli strains isolated from diarrheic and non-diarrheic pigs from smallholder herds in northern and eastern Uganda. BMC Microbiol 16: 178.
  17. Katsuda K, Kohmoto M, Kawashima K, Tsunemitsu H. 2006. Frequency of enteropathogen detection in suckling and weaned pigs with diarrhea in Japan. J Vet Diagn Invest 18: 350-4. https://doi.org/10.1177/104063870601800405
  18. Kim HB, Wang M, Park CH, Kim EC, Jacoby GA, Hooper DC. 2009. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob Agents Chemother 53: 3582-4. https://doi.org/10.1128/AAC.01574-08
  19. Kim KY, Park JH, Kwak HS, Woo GJ. 2011. Characterization of the quinolone resistance mechanism in foodborne Salmonella isolates with high nalidixic acid resistance. Int J Food Microbiol 146: 52-6. https://doi.org/10.1016/j.ijfoodmicro.2011.01.037
  20. Kim YA, Kim H, Seo YH, Park GE, Lee H, Lee K. 2021. Prevalence and molecular epidemiology of extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli from multiple sectors of the swine industry in Korea: a Korean nationwide monitoring program for a one health approach to combat antimicrobial resistance. Ann Lab Med 41: 285-292. https://doi.org/10.3343/alm.2021.41.3.285
  21. Li S, Wang L, Zhou Y, Miao Z. 2020. Prevalence and characterization of virulence genes in Escherichia coli isolated from piglets suffering post-weaning diarrhoea in Shandong Province, China. Vet Med Sci 6: 69-75. https://doi.org/10.1002/vms3.207
  22. Luppi A, Gibellini M, Gin T, Vangroenweghe F, Vandenbroucke V, Bauerfeind R, Bonilauri P, Labarque G, Hidalgo A. 2016. Prevalence of virulence factors in enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhoea in Europe. Porcine Health Manag 2: 20.
  23. Misumi W, Funamori T, Hamada K, Iwamoto J, Fujisono S, Chitose K, Kusumoto M. 2021. Association between antimicrobial treatment and resistance of pathogenic Escherichia coli isolated from diseased swine in Kagoshima Prefecture, Japan. J Vet Med Sci 83: 358-369. https://doi.org/10.1292/jvms.20-0338
  24. Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin-Bastuji B, Gonzales Rojas JL, Gortazar Schmidt C, Herskin M, Michel V, Miranda Chueca MA, Padalino B, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Dewulf J, Guardabassi L, Hilbert F, Mader R, Baldinelli F, Alvarez J. 2021. Scientific Opinion on the assessment of animal diseases caused by bacteria resistant to antimicrobials: Swine. EFSA Journal 19: 7113.
  25. One Health 항생제 내성균 다부처 공동대응사업. https://www.kdca.go.kr/nohas/common/main.do. act/al/sal0301vw.jsp?PAR_MENU_ID=04&MENU_ID=0403&page=1&CONT_SEQ=368388.
  26. Pagani L, Dell'Amico E, Migliavacca R, D'Andrea MM, Giacobone E, Amicosante G, Romero E, Rossolini GM. 2003. Multiple CTX-M-type extendedspectrum beta-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J Clin Microbiol 41: 4264-9. https://doi.org/10.1128/JCM.41.9.4264-4269.2003
  27. Shim JB, Seo KW, Lee YJ. 2019. Antimicrobial resistance and virulence genes of β-lactamase producing E. coli isolated from commercial layers. J Pre Vet Med 43: 31-37. https://doi.org/10.13041/jpvm.2019.43.1.31
  28. Song JH, Oh SS, Kim JH, Park SK, Shin JW. 2020. Clinically relevant extended-spectrum β-lactamaseproducing Escherichia coli isolates from food animals in south Korea. Front Microbiol 11: 604.
  29. Sung JY. 2018. Analysis of quinolone resistance determinants in Escherichia coli isolated from clinical specimens and livestock feces. Korean J Clin Lab Sci 50: 422-430. https://doi.org/10.15324/kjcls.2018.50.4.422
  30. Vidal A, Aguirre L, Seminati C, Tello M, Redondo N, Martin M, Darwich L. 2020. Antimicrobial resistance profiles and characterization of Escherichia coli strains from cases of neonatal diarrhea in Spanish pig farms. Vet Sci 7: 48.
  31. WHO. 2018. Critically important antimicrobials for human medicine 6th. https://www.who.int/publications/i/item/9789241515528.
  32. WOAH. 2021. OIE list of antimicrobial agents of veterinary importance. https://www.woah.org/app/uploads/2021/06/a-oie-list-antimicrobials-june2021.pdf.
  33. Zhang W, Zhao M, Ruesch L, Omot A, Francis D. 2007. Prevalence of virulence genes in Escherichia coli strains recently isolated from young pigs with diarrhea in the US. Vet Microbiol 123: 145-152. https://doi.org/10.1016/j.vetmic.2007.02.018
  34. Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J. 2019. Colibacillosis. pp. 807-834. In: Fairbrother JM, Nadeau E(ed.). Diseases of swine. 11th. Wiley-Blackwell. USA.