DOI QR코드

DOI QR Code

Cloning and Biochemical Characterization of a Hyaluronate Lyase from Bacillus sp. CQMU-D

  • Lu Wang (Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University) ;
  • Qianqian Liu (Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University) ;
  • Xue Gong (Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University) ;
  • Wenwen Jian (Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University) ;
  • Yihong Cui (Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University) ;
  • Qianying Jia (Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University) ;
  • Jibei Zhang (International Medical College, Chongqing Medical University) ;
  • Yi Zhang (International Medical College, Chongqing Medical University) ;
  • Yanan Guo (Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University) ;
  • He Lu (Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University) ;
  • Zeng Tu (Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University)
  • Received : 2022.09.23
  • Accepted : 2022.11.29
  • Published : 2023.02.28

Abstract

Hyaluronidase (HAase) can enhance drug diffusion and dissipate edema by degrading hyaluronic acid (HA) in the extracellular matrix into unsaturated HA oligosaccharides in mammalian tissues. Microorganisms are recognized as valuable sources of HAase. In this study, a new hyaluronate lyase (HAaseD) from Bacillus sp. CQMU-D was expressed in Escherichia coli BL21, purified, and characterized. The results showed that HAaseD belonged to the polysaccharide lyase (PL) 8 family and had a molecular weight of 123 kDa. HAaseD could degrade chondroitin sulfate (CS) -A, CS-B, CS-C, and HA, with the highest activity toward HA. The optimum temperature and pH value of HAaseD were 40℃ and 7.0, respectively. In addition, HAaseD retained stability in an alkaline environment and displayed higher activity with appropriate concentrations of metal ions. Moreover, HAaseD was an endolytic hyaluronate lyase that could degrade HA to produce unsaturated HA oligosaccharides. Together, our findings indicate that HAaseD from Bacillus sp. CQMU-D is a new hyaluronate lyase and with excellent potential for application in industrial production.

Keywords

Acknowledgement

We thank Dr. Kim Hayer (Lecturer Medical Medical School, University of Leicester) for her critical reading and editing of this manuscript. This research was supported by Chongqing Natural Science Foundation [No. cstc2021jcyj-msxmX0158], and Scientific and Technological Research Program of Chongqing Municipal Education Commission [No. KJQN202113201].

References

  1. Volpi N, Schiller J, Stern R, et al. 2009. Role, metabolism, chemical modifications and applications of hyaluronan. Curr. Med. Chem. 16: 1718-1745. https://doi.org/10.2174/092986709788186138
  2. Kogan G, Soltes L, Stern R, Gemeiner P. 2007. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29: 17-25. https://doi.org/10.1007/s10529-006-9219-z
  3. Fallacara A, Baldini E, Manfredini S, Vertuani S. 2018. Hyaluronic acid in the third millennium. Polymers 10: 701.
  4. Fraser J, Laurent T, Laurent U. 1997. Hyaluronan: its nature, distribution, functions and turnover. J. Intern. Med. 242: 27-33. https://doi.org/10.1046/j.1365-2796.1997.00170.x
  5. Kobayashi T, Chanmee T, Itano N. 2020. Hyaluronan: metabolism and function. Biomolecules 10: 1525.
  6. Sudha P, Rose M. 2014. Beneficial effects of hyaluronic acid. Adv. Food. Nutr. Res. 72: 137-176. https://doi.org/10.1016/B978-0-12-800269-8.00009-9
  7. Wang W, Wang J, Li F. 2017. Hyaluronidase and chondroitinase. Adv. Exp. Med. Biol. 925: 75-87. https://doi.org/10.1007/5584_2016_54
  8. West D, Kumar S. 1989. The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp. Cell. Res. 183: 179-196. https://doi.org/10.1016/0014-4827(89)90428-X
  9. Zhao Y, Qiao S, Shi S, Yao L, Hou X, Li C, et al. 2017. Modulating three-dimensional microenvironment with hyaluronan of different molecular weights alters breast cancer cell invasion behavior. ACS. Appl. Mater. Interface 9: 9327-9338. https://doi.org/10.1021/acsami.6b15187
  10. Wohlrab J, Finke R, Franke W, Wohlrab A. 2012. Clinical trial for safety evaluation of hyaluronidase as diffusion enhancing adjuvant for infiltration analgesia of skin with lidocaine. Dermatol. Surg. 38: 91-96. https://doi.org/10.1111/j.1524-4725.2011.02146.x
  11. Weber G, Buhren B, Schrumpf H, Wohlrab J, Gerber P. 2019. Clinical applications of hyaluronidase. Adv. Exp. Med. Biol. 1148: 255-277. https://doi.org/10.1007/978-981-13-7709-9_12
  12. Guo X, Shi Y, Sheng J, Wang F. 2014. A novel hyaluronidase produced by Bacillus sp. A50. PLoS One 9: e94156.
  13. Kurata A, Matsumoto M, Kobayashi T, Deguchi S, Kishimoto N. 2015. Hyaluronate lyase of a deep-sea Bacillus niacini. Mar. Biotechnol. 17: 277-284. https://doi.org/10.1007/s10126-015-9618-z
  14. King S, Allen A, Maskell D, Dowson C, Whatmore A. 2004. Distribution, genetic diversity, and variable expression of the gene encoding hyaluronate lyase within the Streptococcus suis population. J. Bacteriol. 186: 4740-4747. https://doi.org/10.1128/JB.186.14.4740-4747.2004
  15. Singh S, Malhotra S, Akhtar M. 2014. Characterization of hyaluronic acid specific hyaluronate lyase (HylP) from Streptococcus pyogenes. Biochimie 102: 203-210. https://doi.org/10.1016/j.biochi.2014.03.012
  16. Messina L, Gavira J, Pernagallo S, Unciti-Broceta J, Sanchez Martin R, Diaz-Mochon J, et al. 2016. Identification and characterization of a bacterial hyaluronidase and its production in recombinant form. FEBS Lett. 590: 2180-2189. https://doi.org/10.1002/1873-3468.12258
  17. Zhu C, Zhang J, Li L, Zhang J, Jiang Y, Shen Z, et al. 2017. Purification and characterization of hyaluronate lyase from Arthrobacter globiformis A152. Appl. Biochem. Biotechnol. 182: 216-228. https://doi.org/10.1007/s12010-016-2321-3
  18. Sun X, Wang Z, Bi Y, Wang Y, Liu H. 2015. Genetic and functional characterization of the hyaluronate lyase HylB and the beta-N-acetylglucosaminidase HylZ in Streptococcus zooepidemicus. Curr. Microbiol. 70: 35-42. https://doi.org/10.1007/s00284-014-0679-4
  19. Han W, Wang W, Zhao M, Sugahara K, Li F. 2014. A novel eliminase from a marine bacterium that degrades hyaluronan and chondroitin sulfate. J. Biol. Chem. 289: 27886-27898. https://doi.org/10.1074/jbc.M114.590752
  20. Maccari F, Tripodi F, Volpi N. 2004. High-performance capillary electrophoresis separation of hyaluronan oligosaccharides produced by Streptomyces hyalurolyticus hyaluronate lyase. Carbohydr Polym. 56: 55-63. https://doi.org/10.1016/j.carbpol.2003.12.002
  21. Wang L, Liu Q, Hao R, Xiong J, Li J, Guo Y, et al. 2022. Characterization of a hyaluronidase-producing Bacillus sp. CQMU-D isolated from soil. Curr. Microbiol. 79: 328.
  22. Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022-3027. https://doi.org/10.1093/molbev/msab120
  23. Khan S, Zada N, Sahinkaya M, Nigar Colak D, Ahmed S, Hasan F, et al. 2021. Cloning, expression and biochemical characterization of lignin-degrading DyP-type peroxidase from Bacillus sp. Strain BL5. Enzyme. Microb. Technol. 151: 109917.
  24. Lin B, Hollingshead SK, Coligan JE, Egan ML, Pritchard DG. 1994. Cloning and expression of the gene for group B streptococcal hyaluronate lyase. J. Biol. Chem. 269: 30113.
  25. Li Y, Zhang S, Wu H, Wang X, Yu W, Han F. 2020. Biochemical characterization of a thermophilic hyaluronate lyase TcHly8C from Thermasporomyces composti DSM22891. Int. J. Biol. Macromol. 165: 1211-1218. https://doi.org/10.1016/j.ijbiomac.2020.10.011
  26. Lombard V, Golaconda Ramulu H, Drula E, Coutinho P, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic. Acid. Res. 42: D490-495. https://doi.org/10.1093/nar/gkt1178
  27. Sato N, Shimada M, Nakajima H, Oda H, Kimura S. 1994. Cloning and expression in Escherichia coli of the gene encoding the Proteus vulgaris chondroitin ABC lyase. Appl. Microbiol. Biotechnol. 41: 39-46. https://doi.org/10.1007/BF00166079
  28. Prabhakar V, Capila I, Soundararajan V, Raman R, Sasisekharan R. 2009. Recombinant expression, purification, and biochemical characterization of chondroitinase ABC II from Proteus vulgaris. J. Biol. Chem. 284: 974-982. https://doi.org/10.1074/jbc.M806630200
  29. Wang X, Wei Z, Wu H, Li Y, Han F, Yu W. 2021. Characterization of a hyaluronic acid utilization locus and identification of two hyaluronate lyases in a marine bacterium Vibrio alginolyticus LWW-9. Front. Microbiol 12: 696096.
  30. Wang W, Cai X, Han N, Han W, Sugahara K, Li F. 2017. Sequencing of chondroitin sulfate oligosaccharides using a novel exolyase from a marine bacterium that degrades hyaluronan and chondroitin sulfate/dermatan sulfate. Biochem. J. 474: 3831-3848. https://doi.org/10.1042/BCJ20170591
  31. Chen L, Shi C, Yin F, Wang F, Sheng J. 2019. Cloning and characterization of a chondroitin AC exolyase from Arthrobacter sp. SD-04. Mol. Biotechnol. 61: 791-800. https://doi.org/10.1007/s12033-019-00208-z
  32. Sharma R, Kuche K, Thakor P, Bhavana V, Srivastava S, Mehra N, et al. 2022. Chondroitin sulfate: emerging biomaterial for biopharmaceutical purpose and tissue engineering. Carbohydr. Polym. 286: 119305.
  33. Wang Z, Sun J, Li Y, Song G, Su H, Yu W, et al. 2022. Cloning, expression, and characterization of a glycosaminoglycan lyase from Vibrio sp. H240. Enzyme Microb. Technol. 154: 109952.