DOI QR코드

DOI QR Code

Distribution Characteristics and Source Estimation of Polycyclic Aromatic Hydrocarbons in PM-10 from Gwangju

광주지역 미세먼지(PM-10)의 다환방향족탄화수소 분포 특성 및 발생원 추정

  • Seung-Ho Kim (Health and Environment Research Institute of Gwangju) ;
  • Byung-Hoon Park (Health and Environment Research Institute of Gwangju) ;
  • Min-cheol Cho (Health and Environment Research Institute of Gwangju) ;
  • Hye-Yun Na (Health and Environment Research Institute of Gwangju) ;
  • Won-Hyung Park (Health and Environment Research Institute of Gwangju) ;
  • Gwang-yeob Seo (Health and Environment Research Institute of Gwangju) ;
  • Se-Heang Lee (Health and Environment Research Institute of Gwangju) ;
  • Hung-Soo Joo (Department of Environmental Engineering, Anyang University)
  • 김승호 (광주광역시보건환경연구원) ;
  • 박병훈 (광주광역시보건환경연구원) ;
  • 조민철 (광주광역시보건환경연구원) ;
  • 나혜윤 (광주광역시보건환경연구원) ;
  • 박원형 (광주광역시보건환경연구원) ;
  • 서광엽 (광주광역시보건환경연구원) ;
  • 이세행 (광주광역시보건환경연구원) ;
  • 주흥수 (안양대학교 환경에너지공학과)
  • Received : 2023.02.10
  • Accepted : 2023.03.30
  • Published : 2023.04.30

Abstract

This study was conducted to investigate the distribution characteristics, source identification, and health risk of polycyclic aromatic hydrocarbons (PAHs) present in particulate matter 10 (PM-10), in Gwangju. PM-10 samples were collected from September 2021 to August 2022 from three sampling sites, one located in each of the following areas: green, residential, and industrial. The average concentrations of PAHs were found to be higher in the industrial area (9.75±6.51 ng/㎥) than in the green (6.90±2.41 ng/㎥) and residential (6.74±2.38 ng/㎥) areas. Throughout the year and across all sites, five-ring PAHs accounted for the largest proportion (29.8-34.5%) of all PAHs. The concentrations of PAHs showed distinct seasonal variations, with the highest concentration observed in winter, followed by autumn, spring, and summer. Source apportionment analyses were performed using diagnostic ratios and principal component analyses, which indicated that coal/biomass combustion and vehicle emissions were the primary sources of PAHs in PM-10. The incremental lifetime cancer risk was estimated for all age groups at all sampling sites, and the results revealed a much lower risk level than the standard acceptable risk level (1×10-6).

Keywords

Acknowledgement

본 연구는 2022년 환경부 환경분야 시험검사의 국제적 적합성 기반구축 사업과 광주광역시보건환경연구원 연구역량강화 사업의 지원으로 수행 되었습니다.

References

  1. Albuquerque, M., Coutinho, M., Borrego, C., 2016, Long-term monitoring and seasonal analysis of polycyclic aromatic hydrocarbons (PAHs) measured over a decade in the ambient air of Porto, Portugal, Sci. Total Environ., 543, 439-448. https://doi.org/10.1016/j.scitotenv.2015.11.064
  2. Andreou, G., Rapsomanikis, G., 2009, Polycyclic aromatic hydrocarbons and their oxygenated derivatives in the urban atmospheric of Athens, J. Hazard. Mater., 172, 363-373. https://doi.org/10.1016/j.jhazmat.2009.07.023
  3. Bhargava, A., Khanna, R., Bhargava, S., Kumar, S., 2004, Exposure risk to carcinogenic PAHs in indoor air during biomass combustion whilst cooking in rural India, Atmos. Environ., 38, 4761-4767. https://doi.org/10.1016/j.atmosenv.2004.05.012
  4. Bortey-Sam, N., Ikenaka, Y., Akoto, O., Nakayama, S. M. M., Yohannes, Y. B., Baidoo, E., Mizukawa, H., Ishizuka, M., 2015, Levels, potential sources and human health risk of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Kumasi, Ghana, Environ. Sci. Pollut. Res., 22, 9658-9667. https://doi.org/10.1007/s11356-014-4022-1
  5. Brown, A. S., Brown, R. J. C., Coleman, P. J., Conolly, C., Sweetman, A. J., Jones, K. C., Butterfield, D. M., Sarantaridis, D., Donovan, B. J., Roberts, I., 2013, Twenty years of measurement of polycyclic aromatic hydrocarbons (PAHs) in UK ambient air by nationwide air quality networks, Environ. Sci. Process. Impacts, 15, 1199-1215. https://doi.org/10.1039/c3em00126a
  6. Chang, K. F., Fang, G. C., Chen, J. C., Wu, Y. S., 2006, Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: A review from 1999 to 2004, Environ. Poll., 142, 388-396. https://doi.org/10.1016/j.envpol.2005.09.025
  7. Chen, F., Hu, W., Zhong, Q., 2013, Emissions of particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Fu Gui-shan tunnel of Nanjing, China, Atmos. Res., 24, 53-60. https://doi.org/10.1016/j.atmosres.2012.12.008
  8. Chen, S. C., Liao, C. M., 2006, Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources, Sci. Total Environ., 366, 112-123. https://doi.org/10.1016/j.scitotenv.2005.08.047
  9. Chen, Y., Li, X. H., Zhu, T. L., Han, Y. J., Lv, D., 2017, PM2.5-bound PAHs in three indoor and one outdoor air in Beijing: concentration, source and health risk assessment, Sci. Total Environ., 586, 255-264. https://doi.org/10.1016/j.scitotenv.2017.01.214
  10. Choi, M. S., Baek, S. O., 2016, Statistical analysis of PM10 and meteorological data in Pohang, a steel-industrial city, J. Kor. Soc. Atmos. Environ., 32, 329-341. https://doi.org/10.5572/KOSAE.2016.32.3.329
  11. Dachs, J., Glenn, T. R., Gigliotti, C. L., Brunciak, P., Totten, L. A., Nelson, E. D., Franz, T. P., Eisenreich, S., 2002, Processes driving the short-term variability of polycyclic aromatic hydrocarbons in the Baltimore and northern Chesapeake Bay atmosphere, USA, Atmos. Environ., 36, 2281-2295. https://doi.org/10.1016/S1352-2310(02)00236-4
  12. De Pieri, S., Arruti, A., Huremovic, J., Sulejmanovic, J., Selovic, A., Dordevic, D., Fernandez-Olmo, I., Gambaro, A., 2014, PAHs in the urban air of Sarajevo: levels, sources, day/night variation, and human inhalation risk, Environ. Monit. Assess., 186, 1409-1419. https://doi.org/10.1007/s10661-013-3463-1
  13. Di Vaio, P., Cocozziello, B., Corvino, A., Florino, F., Frecentrese, F., Magli, E., Onorati, G., Saccone, I., Santagada, V., Settimo, G., 2016, Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples, Atmos. Environ., 129, 186-196. https://doi.org/10.1016/j.atmosenv.2016.01.020
  14. European Union, 2018, European Union air quality standards, http://ec.europa.eu/environment/air/quality/standards.htm.
  15. Garban, B., Blanchoud, H., Motelay-Massei, A., Chevreuil, M., Ollivon, D., 2002, Atmospheric bulk deposition of PAHs onto France: trends from urban to remote sites, Atmos. Environ., 36, 5395-5403. https://doi.org/10.1016/S1352-2310(02)00414-4
  16. Haha, M., Maharana, D., Kurumisawa, R., Takada, H., Yeo, B., Rodrigues, A., Bhattacharya, B., Kumata, H., Okuda, T., He, K., Ma, Y., Nakajima, F., Zakaria, M., Giang, D., Viet, P., 2017, Seasonal trends of atmospheric PAHs in five Asian megacities and source detection using suitable biomarkers, Aerosol Air Qual. Res., 17, 2247-2262. https://doi.org/10.4209/aaqr.2017.05.0163
  17. Jamhari, A. A., Sahani, M., Latif, M. T., Chan, K. M., Tan, H. S., Khan, M. F., Tahir, N. M., 2014, Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia, Atmos. Environ., 86, 16-27. https://doi.org/10.1016/j.atmosenv.2013.12.019
  18. Kameda, Y., Shirai, J., Komai, T., Nakanishi, J., Masunaga, S., 2005, Atmospheric polycyclic aromatic hydrocarbons: size distribution, estimation of their risk and their depositions to human respiratory tract, Sci. Total Environ., 340, 71-80. https://doi.org/10.1016/j.scitotenv.2004.08.009
  19. Kaupp, H., McLachlan, M. S., 1999, Atmospheric particle size distribution of polychlorinated dibenzo -p-dioxins and dibenzofurnans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) and their implications for wet and dry deposition, Atmos. Environ., 33, 85-95. https://doi.org/10.1016/S1352-2310(98)00129-0
  20. Kaur, S., Senthilkumar, K., Verma, V., Kumar, B., Kumar, S., Katnoria, J., Sharma, C., 2013, Preliminary analysis of polycyclic aromatic hydrocarbons in air particles (PM10) in Amritsar, India: sources, apportionment, and possible risk implications to humans, Arch. Environ. Contam. Toxicol., 65, 382-395. https://doi.org/10.1007/s00244-013-9912-6
  21. Kim, E. H., Kim, B. U., Kim, H. C., Kim, S. T., 2017, The variability of ozone sensitivity to anthropogenic emissions with biogenic emissions modeled by MEGAN and BEIS3, Atmosphere, 8, 187-210. https://doi.org/10.3390/atmos8100187
  22. Hong, S. B., Kang, C. H., Kim, W. H., Kim, Y. P., Yi S. M., Ghim, Y. S., Song, C. H., Jung, C. H., Hong, J. H., 2009, PAHs concentrations of PM10 in Seoul metropolitan area, J. Korean Soc. Atmos. Environ., 25, 347-359. https://doi.org/10.5572/KOSAE.2009.25.4.347
  23. Kim, I. S., Lee, J. Y., Kim, Y. P., 2013, Impact of polycyclic aromatic hydrocarbons (PAH) emissions from North Korea to the air quality in the Seoul Metropolitan area, South Korea, Atmos. Environ., 70, 159-165. https://doi.org/10.1016/j.atmosenv.2012.12.040
  24. Kong, S. F., Ji, Y. Q., Li, Z. Y., Lu, B., Bai, Z. P., 2013, Emission and profile characteristic of polycyclic aromatic hydrocarbons in PM10 and PM2.5 from stationary sources based on dilution sampling, Atmos. Environ., 77, 155-165. https://doi.org/10.1016/j.atmosenv.2013.04.073
  25. Lai, Y., Tsai, C., Liang, Y., Chien, G., 2017, Distribution and sources of atmospheric polycyclic aromatic hydrocarbons at an industrial region in Kaohsiung, Taiwan, Aerosol Air Qual., Res., 17, 776-787. https://doi.org/10.4209/aaqr.2016.11.0482
  26. Lee, J. Y., Kim, Y. P., Kang, C. H., Chim, Y. S., 2006, Seasonal trend of particulate PAHs at Gosan, a background site in Korea between 2001 and 2002 and major factors affecting their levels, Atmos. Res., 82, 680-687. https://doi.org/10.1016/j.atmosres.2006.02.022
  27. Lee, J. Y., Kim, Y. P., Kang, C. H., 2011, Characteristics of the ambient particulate PAHs at Seoul, a mega city of Northeast Asia in comparison with the characteristics of a background site, Atmos. Environ., 99, 50-56. https://doi.org/10.1016/j.atmosres.2010.08.029
  28. Lee, S. H., Lee, D. H., Park, K. S., Song, H. M., Yang, Y. C., Lee, K. W., Cho, Y. G., Seo, G. Y., 2016, A Study on characteristics of VOCs in Gwangju using statistical analysis, J. Korean Soc. Environ. Anal., 19, 12-23.
  29. Lee, S. J., Kim, S. J., Park, M. K., Cho, I. G., Lee, H. Y., Choi, S. D., 2018, Contamination characteristics of hazardous air pollutants in particulate matter in the atmosphere of Ulsan, Korea, J. Korean Soc. Environ. Anal., 21, 281-291.
  30. Li, X., Kong, S., Yin, Y., Li, L., Yuan, L., Li, Q., Xiao, H., Chen, K., 2016, Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 around 2013 Asian Youth Games period in Nanjing, Atmos. Res., 174/175, 85-96. https://doi.org/10.1016/j.atmosres.2016.01.010
  31. Li, J., Zhang, G., Li, X. D., Qi, S. H., Liu, G. Q., Peng, X. Z., 2006, Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China, Sci. Total Environ., 355, 145-155. https://doi.org/10.1016/j.scitotenv.2005.02.042
  32. Lim, H. B., Kim, Y. P., Lee, J., Y., 2016, Day and night distribution of gas and particle phases polycyclic aromatic hydrocarbons (PAHs) concentrations in the atmosphere of Seoul, J. Kor. Soc. Atmos. Environ., 32, 408-421. https://doi.org/10.5572/KOSAE.2016.32.4.408
  33. Liu, X., Schnelle-Kreis, J., Schloter-Hai, B., Ma, L., Tai, P., Cao, X., Yu, C., Adam, T., Zimmermann, R., 2019, Analysis of PAHs associated with PM10 and PM2.5 from different districts in Nanjing, Aerosol Air Qual. Res., 19, 2294-2307. https://doi.org/10.4209/aaqr.2019.06.0301
  34. Manoli, E., Kouras, A., Karagkiozidou, O., Argyropoulos, G., Voutsa, D., Samara, C., 2016, Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: Source apportionment of ambient PAH levels and PAH-induced lung cancer risk, Environ. Sci. Pollut. Res., 23, 3556-3568. https://doi.org/10.1007/s11356-015-5573-5
  35. Moon, K., Han, J., Ghim, Y., Kim, Y., 2008, Source apportionment of fine carbonaceous particles by positive matrix factorization at Gosan backgroud site in East Asia, Environ. Int., 34, 654-664. https://doi.org/10.1016/j.envint.2007.12.021
  36. Offenberg, J. H., Baker, J. E., 1999, Aerosol size distributions of polycyclic aromatic hydrocarbons in urban and over-water atmospheres, Environ. Sci. Technol., 33, 3324-3331. https://doi.org/10.1021/es990089c
  37. Omar, N. Y. M. J., Abas, M. R. B., Ketuly, K. A., Tahir, N. M., 2002, Concentrations of PAHs in atmospheric particles (PM10) and roadside soil particles collected in Kuala Lumpur, Malaysia, Atmos. Environ., 36, 247-254. https://doi.org/10.1016/S1352-2310(01)00425-3
  38. Park, D. Y., Choe, Y. T., Yang, W. H., Choi, K. Y., Lee, C. K., 2021, Seasonal concentration of polycyclic aromatic hydrocarbons (PAHs) in residential areas around petrochemical complexes and risk assessment using Monte-Carlo simulation, J. Environ. Health Sci., 47, 366-377.
  39. Ramirez, N., Cuadras, A., Rovira, E., Marce, R. M., Borrull, F., 2011, Risk assessment related to atmospheric polycyclic aromatic hydrocarbons in gas and particle phases near industrial sites, Environ. Health Perspect., 119, 1110-1116. https://doi.org/10.1289/ehp.1002855
  40. Ravindra, K., Sokhi, R., Van Gridken, R., 2008, Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation, Atmos. Environ., 42, 2895-2921. https://doi.org/10.1016/j.atmosenv.2007.12.010
  41. Sadiktsis, I., Bergvall, C., Johansson, C., 2012, Automobile tires-A potential source of highly carcinogenic dibenzopyrenes to the environment, Environ. Sci. Technol., 46, 3326-3334. https://doi.org/10.1021/es204257d
  42. Sulong, N. A., Latif, M. T., Sahani, M., Khan, M. F., Fadzil, M. F., Tahir, N. M., Mohamad, N., Sakai, N., Fujii, Y., Othman, M., 2019, Distribution, sources and potential health risks of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 collected during different monsoon seasons and haze episode in Kuala Lumpur, Chemosphere, 219, 1-14. https://doi.org/10.1016/j.chemosphere.2018.11.195
  43. Tobiszewski, M., Namiesnik, J., 2012, PAH diagnostic ratios for the identification of pollution emission sources, Environ. Pollut., 162, 110-119. https://doi.org/10.1016/j.envpol.2011.10.025
  44. U.S. Environmental Protection Agency, 2005, Guidelines for carcinogen risk assessment, EPA / 630 / P-03 / 001F, Washington, D. C., USA.
  45. U.S. Environmental Protection Agency, 1991, Human health evaluation manual, supplemental guidance: standard default exposure factors, OSWER. Directive 9285.6-03, Washington, D. C., USA.
  46. Weilenmann, M., Favez, J. Y., Alvarez, R., 2009, Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories, Atmos. Environ., 43, 2419-2429. https://doi.org/10.1016/j.atmosenv.2009.02.005
  47. Wiriya, W., Prapamontol, T., Chantara, S., 2013, PM10-bound polycyclic aromatic hydrocarbons in Chiang Mai (Thailand): seasonal variations, source identification, health risk assessment and their relationship to air-mass movement, Atmos. Res., 124, 109-122. https://doi.org/10.1016/j.atmosres.2012.12.014
  48. Yang, T., Hsu, C., Chen, Y., Young, L., Huang, C., Ku, C., 2017, Characteristics, sources, and health risks of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in Hsinchu, Taiwan, Aerosol Air Qual. Res., 17, 563-573. https://doi.org/10.4209/aaqr.2016.06.0283
  49. Yu, G. H., Park, S. S., Jung, S. A., Jo, M. R., Lim, Y. J., Shin, H. J., Lee, S. B., Ghim, Y. S., 2018, Investigation on characteristics of high PM2.5 pollution occurred during October 2015 in Gwangju, J. Korean Soc. Atmos. Environ., 34, 567-587. https://doi.org/10.5572/KOSAE.2018.34.4.567
  50. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., Sylvestre, S., 2002, PAHs in the Fraser river basin: a critical appraisal of PAH ratios as indicators of PAH source and composition, Org. Geochem., 33, 489-515. https://doi.org/10.1016/S0146-6380(02)00002-5
  51. Zhang, Y., Tao, S., 2009, Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004, Atmos. Environ., 43, 812-819. https://doi.org/10.1016/j.atmosenv.2008.10.050