DOI QR코드

DOI QR Code

Wind load parameters and performance of an integral steel platform scaffold system

  • Zhenyu Yang (Earthquake Engineering Research & Test Center, Guangzhou University) ;
  • Qiang Xie (Department of Civil Engineering, Tongji University) ;
  • Yue Li (Department of Civil Engineering, Tongji University) ;
  • Chang He (School of Civil Engineering, Central South University)
  • Received : 2022.01.06
  • Accepted : 2023.04.01
  • Published : 2023.04.25

Abstract

As a new kind of construction facility for high rise buildings, the integral steel platform scaffold system (ISPS) consisting of the steel skeleton and suspended scaffold faces high wind during the construction procedure. The lattice structure type and existence of core tubes both make it difficult to estimate the wind load and calculate the wind-induced responses. In this study, an aeroelastic model with a geometry scale ratio of 1:25 based on the ISPS for Shanghai Tower, with the representative square profile, is manufactured and then tested in a wind tunnel. The first mode of the prototype ISPS is a torsional one with a frequency of only 0.68 Hz, and the model survives under extreme wind speed up to 50 m/s. The static wind load and wind vibration factors are derived based on the test result and supplementary finite element analysis, offering a reference for the following ISPS design. The spacer at the bottom of the suspended scaffold is suggested to be long enough to touch the core tube in the initial status to prevent the collision. Besides, aerodynamic wind loads and cross-wind loads are suggested to be included in the structural design of the ISPS.

Keywords

References

  1. ABAQUS/standard (2008), Analysis User's Manual, Dassault Systemes Simulia Corp. Providence, RI.
  2. Albermani, F.G.A. and Kitipornchai, S. (2003), "Numerical simulation of structural behaviour of transmission towers", Thin Wall Struct., 41(2-3), 167-177. https://doi.org/10.1016/S0263-8231(02)00085-X.
  3. Amoroso, S., Hebert, K. and Levitan, M. (2010), "Wind tunnel tests for mean wind loads on partially clad structures", J. Wind Eng. Ind. Aerod., 98(12), 689-700. https://doi.org/10.1016/j.jweia.2009.08.009.
  4. Baker, W.F., Korista, D.S. and Novak, L.C. (2007), "Burj Dubai: Engineering the world's tallest building", Struct. Des. Tall Special Build., 16(4), 361-375. https://doi.org/10.1002/tal.418.
  5. Beale, R.G. (2014), "Scaffold research-A review", J. Constr. Steel Res., 98, 188-200. https://doi.org/10.1016/j.jcsr.2014.01.016.
  6. Bernardini, E., Spence, S.M., Kwon, D.K. and Kareem, A. (2015), "Performance-based design of high-rise buildings for occupant comfort", J. Struct. Eng., 141(10), 04014244.
  7. Chang, F. K. (1973), "Human response to motions in tall buildings", Journal of the Structural Division, 99(6), 1259-1272. https://doi.org/10.1061/JSDEAG.0003537.
  8. CTPIS, (2000), The Ministry of Construction of People's Republic of China, "CTPIS Temporary Provisions for Integral-Lift Scaffold Structures", China Architecture and Building Press, Beijing (in Chinese),
  9. Davenport, A.G. (1964), "Note on the distribution of the largest value of a random function with application to gust loading", Proceedings of the Institution of Civil Engineers, 28(2), 187-196. https://doi.org/10.1680/iicep.1964.10112.
  10. Fang, F.M., Chang, S.X., Chung, C.Y., Li, Y.C., Lin, C.C. and Huang, C.H. (2021), "Investigations on the wind force and flow of a scaffolding system", J. Chinese Inst. Eng., 44(4), 305-318. https://doi.org/10.1080/02533839.2021.1903341.
  11. Fu, J., Zheng, Q., Huang, Y., Wu, J., Pi, Y. and Liu, Q. (2018), "Design optimization on high-rise buildings considering occupant comfort reliability and joint distribution of wind speed and direction", Eng. Struct., 156, 460-471. https://doi.org/10.1016/j.engstruct.2017.11.041.
  12. GB 50009, 2012. "Chinese Standard Load Code for the Design of Building Structures", China Architecture and Building Press, Beijing, China. Chinese Code.
  13. Huang, M.F., Chan, C.M. and Kwok, K. (2011), "Occupant comfort evaluation and wind-induced serviceability design optimization of tall buildings", Wind Struct., 14(6), 559-582. https://doi.org/10.12989/was.2011.14.6.559
  14. Irtaza, H., Beale, R.G. and Godley, M.H.R. (2012), "A wind-tunnel investigation into the pressure distribution around sheet-clad scaffolds", J. Wind Eng. Ind. Aerod., 103, 86-95. https://doi.org/10.1016/j.jweia.2012.03.004.
  15. Klinger, C. (2014), "Failures of cranes due to wind induced vibrations", Eng. Fail. Anal., 43, 198-220. https://doi.org/10.1016/j.engfailanal.2013.12.007.
  16. Kumaravel, R., and Krishnamoorthy, A. (2020), "Comparative structural analysis of lattice hybrid and tubular wind turbine towers", Wind Struct., 30(1), 29-35. https://doi.org/10.12989/was.2020.30.1.029.
  17. Lin, Y., Hu, A.K., Xiong, F., and Jiang, W. (2014), "Discussion on key points of wind load of jack-up unit", China Ocean Eng., 28(1), 127-138. https://doi.org/10.1007/s13344-014-0010-y. Lipecki, T., Jaminska-Gadomska, P. and Blazik-Borowa, E.
  18. "Wind load on facade scaffolding without protective cover-Eurocode and in-situ measurement approaches", J. Build. Eng., 42, 102516. https://doi.org/10.1016/j.jobe.2021.102516.
  19. Lipecki, T., Jaminska-Gadomska, P., Bec, J., and Blazik-Borowa, E. (2020), "Facade scaffolding behaviour under wind action", Arch. Civil Mech. Eng., 20(1), 1-15. https://doi.org/10.1007/s43452-020-00034-0.
  20. Lu, Y., Zhang, L., He, Z., Feng, F. and Pan, F. (2021), "Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study", Wind Struct., 32(5), 405-421. https://doi.org/10.12989/was.2021.32.5.405.
  21. Luo, Y., Xu, W., Zhou, H. and Gong, G. (2006), "Analysis on dynamic behavior of integral steel platform formwork system for super high rise buildings", Arch. Technol., 8. (in Chinese)
  22. Pomaranzi, G., Bistoni, O., Schito, P. and Zasso, A. (2021), "Numerical modelling of three-dimensional screens, treated as porous media", Wind Struct., 33(5), 409-422. https://doi.org/10.12989/was.2021.33.5.409.
  23. Scarabino, A., Sainz, M.G., Bacchi, F., Delnero, J.S. and Canchero, A. (2016), "Numerical and experimental study of unsteady wind loads on panels of a radar aerial", Wind Struct., 23(1), 1-18. https://doi.org/10.12989/was.2016.23.1.001
  24. Songpol Charuvisit, Yasumichi Hino, Katsutoshi Ohdo, et al., (2007), "Wind tunnel experiment on wind pressures acting on the scaffolds in strong winds", J. Wind Eng., 32(1), 1-10. https://doi.org/10.5359/jwe.32.1.
  25. Voisin, D., Grillaud, G., Solliec, C., Beley-Sayettat, A., Berlaud, J. L. and Miton, A. (2004), "Wind tunnel test method to study out-of-service tower crane behaviour in storm winds", J. Wind Eng. Ind. Aerod., 92(7-8), 687-697. https://doi.org/10.1016/j.jweia.2004.03.005.
  26. Wang, F., Tamura, Y. and Yoshida, A. (2013), "Wind loads on clad scaffolding with different geometries and building opening ratios", J. Wind Eng. Ind. Aerod., 120, 37-50. https://doi.org/10.1016/j.jweia.2013.06.015.
  27. Wang, Z., Tang, H., Li, Y., Guo, J. and Liu, Z. (2021), "Windproof ability of aerodynamic measures to improve the wind environment above a truss girder", Wind Struct., 32(5), 423-437. https://doi.org/10.12989/was.2021.32.5.423.
  28. Xu, Y., Ren, Q., Bai, G. and Li H. (2019), "Experimental research on design wind loads of a large air-cooling structure", Wind Struct., 28(4), 215-224. https://doi.org/10.12989/was.2019.28.4.215.
  29. Yue, F., Li, G.Q. and Yuan, Y. (2012), "Design methods of integral-lift tubular steel scaffolds for high-rise building construction", Struct. Des. Tall Special Build., 21(1), 46-56. https://doi.org/10.1002/tal.635.
  30. Yue, F., Yuan, Y., Li, G.Q., Ye, K.M., Chen, Z.M. and Wang, Z.P. (2005), "Wind load on integral-lift scaffolds for tall building construction", J. Struct. Eng., 131(5), 816-824. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(816)
  31. Zayed, T., Sharifi, M.R., Baciu, S. and Amer, M. (2008), "Slip-form application to concrete structures", J. Constr. Eng. Manag., 134(3), 157-168.  https://doi.org/10.1061/(ASCE)0733-9364(2008)134:3(157)