DOI QR코드

DOI QR Code

Study on Thermodynamic Performance of Electrochemical Hydrogen Compressor

전기화학적 수소 압축기의 열역학적 성능에 관한 연구

  • TEAHEON KIM (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • DONGYUN KIM (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • DONGKEUN LEE (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • YOUNGSANG KIM (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • KOOKYOUNG AHN (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • YONGGYUN BAE (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • JINYOUNG PARK (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • YOUNG KIM (Department of Thermal Energy Solutions, Korea Institute of Machinery & Materials)
  • 김태헌 (한국기계연구원 무탄소연료발전연구실) ;
  • 김동윤 (한국기계연구원 무탄소연료발전연구실) ;
  • 이동근 (한국기계연구원 무탄소연료발전연구실) ;
  • 김영상 (한국기계연구원 무탄소연료발전연구실) ;
  • 안국영 (한국기계연구원 무탄소연료발전연구실) ;
  • 배용균 (한국기계연구원 무탄소연료발전연구실) ;
  • 박진영 (한국기계연구원 무탄소연료발전연구실) ;
  • 김영 (한국기계연구원 열에너지솔루션연구실)
  • Received : 2022.12.16
  • Accepted : 2023.04.11
  • Published : 2023.04.28

Abstract

The thermodynamic performance of the electrochemical hydrogen compressor was analyzed to perform a comparative analysis with the performance of the mechanical compressor. The performance was analyzed through the applied current and the measured voltage value. The test results showed that the efficiency of the electrochemical hydrogen compressor was high in the low current density range. In addition, it was confirmed that the amount of increasing compress work of the electrochemical hydrogen compressor is smaller than that of the mechanical compressor. Therefore, it is expected to have higher efficiency than mechanical compression when compressed with a sufficiently high-pressure range.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행되었다(No.2019205010060, No. 20213030040110).

References

  1. D. Marcius, A. Kovac, and M. Firak, "Electrochemical hydrogen compressor: recent progress and challenges", International Journal of Hydrogen Energy, Vol. 47, No. 57, 2022, pp. 24179-24193, doi: https://doi.org/10.1016/j.ijhydene.2022.04.134.
  2. G. Sdanghi, G. Maranzana, A. Celzard, and V. Fierro, "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications", Renewable and Sustainable Energy Reviews, Vol. 102, 2019, pp. 150-170, doi: https://doi.org/10.1016/j.rser.2018.11.028.
  3. M. Nordio, F. Rizzi, G. Manzolini, M. Mulder, L. Raymakers, M. Van Sint Annaland, and F. Gallucci, "Experimental and modelling study of an electrochemical hydrogen compressor", Chemical Engineering Journal, Vol. 369, 2019, pp. 432-442, doi: https://doi.org/10.1016/j.cej.2019.03.106.
  4. S. K. Kim, "A review of electrochemical hydrogen compressor technology", Journal of Hydrogen and New Energy, Vol. 31, No. 6, 2020, pp. 578-586, doi: https://doi.org/10.7316/KHNES.2020.31.6.578.
  5. R. Yang and K. Kim, "Study on electrochemical hydrogen compressor", Journal of Industrial Science and Technology Institute, Vol. 36, No. 1, 2022, pp. 15-20, doi: https://doi.org/10.54726/JISTI.36.1.3.
  6. B. Rohland, K. Eberle, R. Strobel, J. Scholta, and J. Garche, "Electrochemical hydrogen compressor", Electrochimica Acta, Vol. 43, No. 24, 1998, pp. 3841-3846, doi: https://doi.org/10.1016/S00134686(98)001443.
  7. M. Suermann, T. Kiupel, T. J. Schmidt, and F. N. Buchi, "Electrochemical hydrogen compression: efficient pressurization concept derived from an energetic evaluation", Journal of The Electrochemical Society, Vol. 164, No. 12, 2017, pp. F1187, doi: https://doi.org/10.1149/2.1361712jes.
  8. Y. Tao, Y. Hwang, R. Reinhard, and C. Wang, "Experimental study on electrochemical compression of ammonia and carbon dioxide for vapor compression refrigeration system", International Journal of Refrigeration, Vol. 104, 2019, pp. 180-188, doi: https://doi.org/10.1016/j.ijrefrig.2019.05.009.
  9. S. Seo and C. Lee, "Performance analysis of polymer electrolyte membrane fuel cell by AC impedance measurement", Journal of Hydrogen and New Energy, Vol. 20, No. 54, 2009, pp. 283-290. Retrieved from https://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=JAKO200931559905261&SITE=CLICK.
  10. J. Zou, Y. Jin, Z. Wen, S. Xing, N. Han, K. Yao, Z. Zhao, M. Chen, J. Fan, H. Li, and H. Wang, "Insights into electro-chemical hydrogen compressor operating parameters and membrane electrode assembly degradation mechanisms", Journal of Power Sources, Vol. 484, 2021, pp. 229-249, doi:https://doi.org/10.1016/j.jpowsour.2020.229249.
  11. Y. M. Hao, H. Nakajima, H. Yoshizumi, A. Inada, K. Sasaki, and K. Ito, "Characterization of an electrochemical hydrogen pump with internal humidifier and deadend anode channel", International Journal of Hydrogen Energy, Vol. 41, No. 32, 2016, pp. 13879-13887, doi: https://doi.org/10.1016/j.ijhydene.2016.05.160.