DOI QR코드

DOI QR Code

An Exploration for Types of Knowledge Building Discourse and Knowledge Building Processes in Middle School Students' Small Group Learning Using Augmented Reality

증강현실을 활용한 소집단 학습에서 나타나는 중학생의 지식 형성 담화 유형과 지식 형성 과정 탐색

  • Received : 2023.02.07
  • Accepted : 2023.03.29
  • Published : 2023.04.30

Abstract

This study analyzed the types of knowledge building discourse and knowledge building processes in small group learning using augmented reality. Eight 8th grade students took classes using augmented reality in solubility, boiling and melting points. These classes were carried out twice and all the classes were videotaped and recorded. Every student participated in a semi-structured interview. In the types of knowledge building discourse, the proportion of knowledge sharing and knowledge construction was similar. Beneath the knowledge sharing, the proportion of introductory level discussion was higher than identifying key elements of augmented reality. Recalling existing knowledge rarely appeared. Under the knowledge construction, the proportion of advanced level discussion was the highest and the proportion of sharing and critiquing ideas at a different level and efforts to rise above current levels of explanation was similar. The introductory level discussion and identifying key elements of augmented reality were developed into efforts to rise above current levels of explanation and sharing and critiquing ideas at a different level. Visualized results of knowledge building processes showed all the students' graph drew an upward curve, though cumulative number of impact value was different by each student. As a result of the study, effective ways of improving small group learning using augmented reality are discussed.

이 연구에서는 증강현실을 활용한 소집단 학습에서 나타나는 중학생의 지식 형성 담화의 유형과 지식 형성 과정을 탐색하였다. 서울시 소재의 남녀공학 중학교 2학년 학생 8명이 증강현실을 활용하여 용해도 개념, 끓는점과 녹는점 개념에 대한 소집단 학습에 참여하였다. 수업은 2차시에 걸쳐 이루어졌으며 모두 녹음 및 녹화하였다. 이후, 연구에 참여한 학생들은 반구조화된 면담에 참여하였다. 지식 형성 담화의 유형에서 지식 공유와 지식 구성의 비율은 비슷하게 나타났다. 지식 공유에서는 기초 수준의 토의, 증강현실의 핵심 요소 확인의 순으로 나타났고, 사전 지식의 회상은 거의 나타나지 않았다. 지식 구성에서는 심화 수준의 토의가 가장 높았고, 그다음으로 다른 수준에서의 공유 및 비판과 현재의 설명 수준을 넘어서려는 노력이 나타났으며, 두 요소의 비율은 유사하였다. 지식 공유의 하위 요소인 기초 수준의 토의와 증강현실의 핵심 요소 확인은 지식 구성의 하위 요소인 현재의 설명 수준을 넘어서려는 노력과 다른 수준에서의 공유 및 비판으로 발전되어 나타났다. 지식 형성 과정을 시각화했을 때, 모든 학생의 누적 영향 값 그래프는 우상향하는 형태로 나타났지만, 소집단별로 두 학생의 누적 영향 값은 차이가 나타나는 경우가 있었다. 이상의 연구 결과를 통해 증강현실을 활용한 중학생의 소집단 학습 촉진 방안을 제시하였다.

Keywords

References

  1. Arvaja, M., Hakkinen, P., Rasku-Puttonen, H., & Etelapelto, A. (2002). Social processes and knowledge building during small group interaction in a school science project. Scandinavian Journal of Educational Research, 46(2), 161-179. https://doi.org/10.1080/00313830220142182
  2. Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355-385. https://doi.org/10.1162/pres.1997.6.4.355
  3. Benson, D. L., Wittrock, M. C., & Baur, M. E. (1993). Students' preconceptions of the nature of gases. Journal of Research in Science Teaching, 30(6), 587-597.
  4. Bower, M., Howe, C., McCredie, N., Robinson, A., & Grover, D. (2014). Augmented reality in education-cases, places and potentials. Educational Media International, 51(1), 1-15. https://doi.org/10.1080/09523987.2014.889400
  5. Cai, S., Chiang, F.-K., & Wang, X. (2013). Using the augmented reality 3D technique for a convex imaging experiment in a physics course. International Journal of Engineering Education, 29(4), 856-865.
  6. Cai, S., Wang, X., & Chiang, F.-K. (2014). A case study of augmented reality simulation system application in a chemistry course. Computers in Human Behavior, 37, 31-40. https://doi.org/10.1016/j.chb.2014.04.018
  7. Chang, H.-Y., & Linn, M. C. (2013). Scaffolding learning from molecular visualizations. Journal of Research in Science Teaching, 50(7), 858-886. https://doi.org/10.1002/tea.21089
  8. Chen, B., Resendes, M., Chai, C. S., & Hong, H. Y. (2017). Two tales of time: Uncovering the significance of sequential patterns among contribution types in knowledge-building discourse. Interactive Learning Environments, 25(2), 162-175.
  9. Cheng, M. M. W., & Gilbert, J. K. (2014). Students' visualization of metallic bonding and the malleability of metals. International Journal of Science Education, 36(8), 1373-1407.
  10. Cheng, Y. W., Wang, Y., Cheng, I. L., & Chen, N. S. (2019). An in-depth analysis of the interaction transitions in a collaborative augmented reality-based mathematic game. Interactive Learning Environments, 27(5-6), 782-796. https://doi.org/10.1080/10494820.2019.1610448
  11. Chiang, T. H., Yang, S. J., & Hwang, G. J. (2014). Students' online interactive patterns in augmented reality-based inquiry activities. Computers & Education, 78, 97-108. https://doi.org/10.1016/j.compedu.2014.05.006
  12. Chiu, J. L., & Linn, M. C. (2012). The role of self-monitoring in learning chemistry with dynamic visualizations. In A. Zohar, & Y. J. Dori (Eds.), Metacognition in science education: Trends in current research (pp. 133-163). Dordrecht, NL: Springer.
  13. Choi, W., Ha, H., & Kim, H.-B. (2021). Exploring students' epistemological framing shift and sophistication of models in a modeling-based instruction in genetics. Biology Education, 49(2), 251-265. https://doi.org/10.15717/BIOEDU.2021.49.2.251
  14. Garzon, J., Kinshuk, Baldiris, S., Gutierrez, J., & Pavon, J. (2020). How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educational Research Review, 31, 100334.
  15. Geelan, D., Larochelle, M., & Lemke, J. L. (2005). The laws of science. In J. Wallace, & W. Louden (Eds.), Dilemmas of science teaching: Perspectives on problems of practice (pp. 22-35). London, UK: Routledge.
  16. Georgiou, Y., & Kyza, E. A. (2021). Bridging narrative and locality in mobile-based augmented reality educational activities: Effects of semantic coupling on students' immersion and learning gains. International Journal of Human-Computer Studies, 145, 102546.
  17. Han, S., & Lim, C. I. (2020). Research trends on augmented reality education in Korea from 2008 to 2019. Journal of Educational Technology, 36(3), 505-528. https://doi.org/10.17232/KSET.36.3.505
  18. Haug, B. S., & Odegaard, M. (2014). From words to concepts: Focusing on word knowledge when teaching for conceptual understanding within an inquiry-based science setting. Research in Science Education, 44(5), 777-800. https://doi.org/10.1007/s11165-014-9402-5
  19. Hmelo-Silver, C. E. (2003). Analyzing collaborative knowledge construction: Multiple methods for integrated understanding. Computers & Education, 41(4), 397-420.
  20. Hogan, K., Nastasi , B. K., & Pressley, M. (1999). Di scourse patterns and collaborative scientific reasoning in peer and teacher-guided discussions. Cognition and Instruction, 17(4), 379-432. https://doi.org/10.1207/S1532690XCI1704_2
  21. Ibanez, M. B., Di Serio, A., Villaran, D., & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1-13. https://doi.org/10.1016/j.compedu.2013.09.004
  22. Jeon, Y.-E., & Hong, H.-G. (2022). The effect of teaching and learning method using mobile augmented reality(MAR) according to scaffolding types on chemistry academic achievement, learning flow, and learning motivation. Journal of Learner-Centered Curriculum and Instruction, 22(15), 275-293. https://doi.org/10.22251/jlcci.2022.22.15.275
  23. Jeon, Y.-E., Ji, J.-Y., & Hong, H.-G. (2022). The effect of process oriented guided inquiry learning using mobile augmented reality on science achievement, science learning motivation, and learning flow in chemical bond. Journal of the Korean Association for Science Education, 42(3), 357-370.
  24. Kim, H. (2018) Augmented reality trends in educational research: Through a systematic review of Korean literature. Journal of The Korean Association of Information Education, 22(3), 397-407. https://doi.org/10.14352/jkaie.2018.22.3.397
  25. King, A. (1994). Guiding knowledge construction in the classroom: Effects of teaching children how to question and how to explain. American Educational Research Journal, 31(2), 338-368. https://doi.org/10.3102/00028312031002338
  26. Kittleson, J. M., & Southerland, S. A. (2004). The role of discourse in group knowledge construction: A case study of engineering students. Journal of Research in Science Teaching, 41(3), 267-293. https://doi.org/10.1002/tea.20003
  27. Knain, E., Fredlund, T., & Furberg, A. (2021). Exploring student reasoning and representation construction in school science through the lenses of social semiotics and interaction analysis. Research in Science Education, 51(1), 93-111.
  28. Lamsa, J., Hamalainen, R., Koskinen, P., & Viiri, J. (2018). Visualising the temporal aspects of collaborative inquiry-based learning processes in technology-enhanced physics learning. International Journal of Science Education, 40(14), 1697-1717.
  29. Lee, J., Lee, B., & Noh, T. (2018). A comparison of middle school students' macroscopic and microscopic conceptions related to the properties of substances. Journal of the Korean Chemical Society, 62(3), 243-252. https://doi.org/10.5012/JKCS.2018.62.3.243
  30. Lee, J., Park, G., & Noh, T. (2020). Development and application of the multiple representation-based learning strategies using augmented reality on the concept of the particulate nature of matter. Journal of The Korean Association For Science Education, 40(4), 375-383.
  31. Lehesvuori, S., Viiri, J., Rasku-Puttonen, H., Moate, J., & Helaakoski, J. (2013). Visualizing communication structures in science classrooms: Tracing cumulativity in teacher-led whole class discussions. Journal of Research in Science Teaching, 50(8), 912-939. https://doi.org/10.1002/tea.21100
  32. Lim, H., & Noh, T. (2001). Verbal interactions in heterogeneous small-group cooperative learning. Journal of the Korean Association for Science Education, 21(4), 668-676.
  33. Lin, H. S., Cheng, H. J., & Lawrenz, F. (2000). The assessment of students and teachers' understanding of gas laws. Journal of Chemical Education, 77(2), 235.
  34. Lin, T.-J., Duh, H. B.-L., Li, N., Wang, H.-Y., & Tsai, C.-C. (2013). An investigation of learners' collaborative knowledge construction performances and behavior patterns in an augmented reality simulation system. Computers & Education, 68, 314-321. https://doi.org/10.1016/j.compedu.2013.05.011
  35. Mercer, N. (1996). The quality of talk in children's collaborative activity in the classroom. Learning and Instruction, 6(4), 359-377. https://doi.org/10.1016/S0959-4752(96)00021-7
  36. Na, J., & Yoon, H. (2021) Analysis of domestic and foreign science education research trends using augmented reality-Focusing on implications for research in elementary science education. Journal of Korean Elementary Science Education, 40(1), 22-35.
  37. Nachairit, A., & Srisawasdi, N. (2015). Using mobile augmented reality for chemistry learning of acid-base titration: Correlation between motivation and perception. In H. Ogata, W. Chen, S. C. Kong, & F. Qiu (Eds.), Proceedings of the 23rd International Conference on Computers in Education (pp. 519-528). Ishikawa, JP: Asia-Pacific Society for Computers in Education.
  38. Nattiv, A. (1994). Helping behaviors and math achievement gain of students using cooperative learning. The Elementary School Journal, 94(3), 285-297. https://doi.org/10.1086/461767
  39. Nichols, K., Gillies, R., & Hedberg, J. (2016). Argumentation-based collaborative inquiry in science through representational work: Impact on primary students' representational fluency. Research in Science Education, 46(3), 343-364.
  40. Nichols, K., Hanan, J., & Ranasinghe, M. (2013). Transforming the social practices of learning with representations: A study of disciplinary discourse. Research in Science Education, 43(1), 179-208. https://doi.org/10.1007/s11165-011-9263-0
  41. Noddings, N. (1989). Theoretical and practical concerns about small groups in mathematics. The Elementary School Journal, 89(5), 607-623. https://doi.org/10.1086/461595
  42. Park, J., Park, Y., & Kang, S. (2013). Analysis of the level of cognitive demands about concepts of the changes of state and kinetic theory on 'Science 1' textbooks in junior high school (III). Journal of the Korean Chemical Society, 57(5), 640-655. https://doi.org/10.5012/jkcs.2013.57.5.640
  43. Rincke, K. (2011). It's rather like learning a language: Development of talk and conceptual understanding in mechanics lessons. International Journal of Science Education, 33(2), 229-258. https://doi.org/10.1080/09500691003615343
  44. Samon, S., & Levy, S. T. (2020). Interactions between reasoning about complex systems and conceptual understanding in learning chemistry. Journal of Research in Science Teaching, 57(1), 58-86. https://doi.org/10.1002/tea.21585
  45. Scardamalia, M., & Bereiter, C. (1993). Technologies for knowledge-building discourse. Communications of the ACM, 36(5), 37-41. https://doi.org/10.1145/155049.155056
  46. Scardamalia, M., & Bereiter, C. (2014). Knowledge building and knowledge creation: Theory, pedagogy, and technology. In R. K. Sawyer (Ed.), The cambridge handbook of the learning sciences (pp. 397-417). New York, NY: Cambridge University Press.
  47. Shin, S., Kim, H., Noh, T., & Lee, J. (2020a). High school students' verbal and physical interactions appeared in collaborative science concept learning using augmented reality. Journal of the Korean Association for Science Education, 40(2), 191-201.
  48. Shin, S., Noh, T., & Lee, J. (2020b). An exploration of learning environment for promoting conceptual understanding, immersion and situational interest in small group learning using augmented reality. Journal of the Korean Chemical Society, 64(6), 360-370.
  49. Singer, J. E., Tal, R., & Wu, H. K. (2003). Students' understanding of the particulate nature of matter. School Science and Mathematics, 103(1), 28-44. https://doi.org/10.1111/j.1949-8594.2003.tb18111.x
  50. Song, N., Shin, K. D., & Noh, T. (2022). Analysis of middle school students' verbal and physical interactions of group size in small group learning using augmented reality. Journal of the Korean Association for Science Education, 42(5), 557-566.
  51. Stieff, M. (2011). Improving representational competence using molecular simulations embedded in inquiry activities. Journal of Research in Science Teaching, 48(10), 1137-1158. https://doi.org/10.1002/tea.20438
  52. Thompson, K., Ashe, D., Carvalho, L., Goodyear, P., Kelly, N., & Parisio, M. (2013). Processing and visualizing data in complex learning environments. American Behavioral Scientist, 57(10), 1401-1420. https://doi.org/10.1177/0002764213479368
  53. van Aalst, J. (2009). Distinguishing knowledge-sharing, knowledge-construction, and knowledge-creation discourses. International Journal of Computer-Supported Collaborative Learning, 4(3), 259-287. https://doi.org/10.1007/s11412-009-9069-5
  54. van Boxtel, C., van der Linden, J., & Kanselaar, G. (2000). Collaborative learning tasks and the elaboration of conceptual knowledge. Learning and Instruction, 10(4), 311-330. https://doi.org/10.1016/S0959-4752(00)00002-5
  55. Waldrip, B., Prain, V., & Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in Science Education, 40(1), 65-80. https://doi.org/10.1007/s11165-009-9157-6
  56. Wilkerson-Jerde, M. H., Gravel, B. E., & Macrander, C. A. (2015). Exploring shifts in middle school learners' modeling activity while generating drawings, animations, and computational simulations of molecular diffusion. Journal of Science Education and Technology, 24(2), 396-415. https://doi.org/10.1007/s10956-014-9497-5
  57. Yang, Y., van Aalst, J., Chan, C. K., & Tian, W. (2016). Reflective assessment in knowledge building by students with low academic achievement. International Journal of Computer-Supported Collaborative Learning, 11, 281-311. https://doi.org/10.1007/s11412-016-9239-1
  58. Zhang, J., Scardamalia, M., Reeve, R., & Messina, R. (2009). Designs for collective cognitive responsibility in knowledge-building communities. The Journal of the Learning Sciences, 18(1), 7-44. https://doi.org/10.1080/10508400802581676
  59. Zhu, G., Scardamalia, M., Moreno, M., Martins, M., Nazeem, R., & Lai, Z. (2022). Discourse moves and emotion in knowledge building discourse and metadiscourse. Frontiers in Education, 7, 900440.