DOI QR코드

DOI QR Code

ON RESULTS OF MIDPOINT-TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL OPERATORS WITH TWICE-DIFFERENTIABLE FUNCTIONS

  • Fatih Hezenci (Department of Mathematics, Faculty of Science and Arts, Duzce University) ;
  • Huseyin Budak (Department of Mathematics, Faculty of Science and Arts, Duzce University)
  • Received : 2022.12.19
  • Accepted : 2023.01.13
  • Published : 2023.06.01

Abstract

This article establishes an equality for the case of twice-differentiable convex functions with respect to the conformable fractional integrals. With the help of this identity, we prove sundry midpoint-type inequalities by twice-differentiable convex functions according to conformable fractional integrals. Several important inequalities are obtained by taking advantage of the convexity, the Hölder inequality, and the power mean inequality. Using the specific selection of our results, we obtain several new and well-known results in the literature.

Keywords

References

  1. T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), 57-66. https://doi.org/10.1016/j.cam.2014.10.016
  2. A. A. Abdelhakim, The flaw in the conformable calculus: It is conformable because it is not fractional, Fract. Calc. Appl. Anal. 22 (2019), 242-254. https://doi.org/10.1515/fca-2019-0016
  3. G. A. Anastassiou, Generalized fractional calculus: New advancements and aplications, Springer, Switzerland, 2021.
  4. N. Attia, A. Akgul, D. Seba, and A. Nour, An efficient numerical technique for a biological population model of fractional order, Chaos, Solutions & Fractals, 141 (2020), 110349.
  5. A. Barani, S. Barani, S. S. Dragomir, Refinements of Hermite-Hadamard inequalities for functions when a power of the absolute value of the second derivative is P -convex, J. Appl. Math. 2012.
  6. H. Budak, F. Ertugral, and E. Pehlivan, Hermite-Hadamard type inequalities for twice differantiable functions via generalized fractional integrals, Filomat 33 (2019), no. 15, 4967-4979. https://doi.org/10.2298/FIL1915967B
  7. H. Budak, F. Hezenci, and H. Kara, On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals, Adv. Differential Equations 2021 (2021), 1-32. https://doi.org/10.1186/s13662-020-03162-2
  8. S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett. 11 (1998), no. 5, 91-95.
  9. A. Gabr, A. H. Abdel Kader, and M. S. Abdel Latif, The Effect of the Parameters of the Generalized Fractional Derivatives On the Behavior of Linear Electrical Circuits, Int. J. Appl. Comput. Math. 7 (2021), 247.
  10. F. Hezenci, A Note on Fractional Midpoint Type Inequalities for Co-ordinated (s1, s2)-Convex Functions Cumhuriyet Science Journal 43 (2022), no. 3, 477-491. https://doi.org/10.17776/csj.1088703
  11. F. Hezenci, H. Budak, and H. Kara, New version of Fractional Simpson type inequalities for twice differentiable functions, Adv. Differential Equations, 2021 (2021), no. 460.
  12. F. Hezenci, M. Bohner, and H. Budak, Fractional midpoint-type inequalities for twice-differentiable functions, submitted.
  13. H. R. Hwang, K. L. Tseng, and K. C. Hsu, New inequalities for fractional integrals and their applications, Turkish J. Math. 40 (2016), no. 3, 471-486. https://doi.org/10.3906/mat-1411-61
  14. A. Hyder, A.H. Soliman, A new generalized θ-conformable calculus and its applications in mathematical physics, Phys. Scr. 96 (2020), 015208.
  15. M. Iqbal, B. M. Iqbal, and K. Nazeer, Generalization of Inequalities Analogous to Hermite-Hadamard Inequality via Fractional Integrals, Bull. Korean Math. Soc. 52 (2015), no. 3, 707-716. https://doi.org/10.4134/BKMS.2015.52.3.707
  16. M. Iqbal, S. Qaisar, and M. Muddassar, A short note on integral inequality of type Hermite-Hadamard through convexity, J. Comput. Anal. Appl. 21 (2016), no. 5, 946-953.
  17. F. Jarad, T. Abdeljawad, and D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl. 10 (2017), no. 5, 2607-2619. https://doi.org/10.22436/jnsa.010.05.27
  18. F. Jarad, E. U˘gurlu, T. Abdeljawad, and D. Baleanu, On a new class of fractional operators, Adv. Differential Equations, 2017 (2017), 247.
  19. H. Kara, H. Budak, and F. Hezenci, New Extensions of the Parameterized Inequalities Based on Riemann-Liouville Fractional Integrals, Mathematics, 10 (2022), no. 18, 3374.
  20. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Sci. B. V., Amsterdam, 2006.
  21. U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput. 147 (2004), no. 5, 137-146.
  22. R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
  23. P. O. Mohammed and M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math. 372 (2020), 112740.
  24. J. E. Pecaric, F. Proschan, and Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, 1992.
  25. S. Qaisar and S. Hussain, On Hermite-Hadamard type inequalities for functions whose first derivative absolute values are convex and concave, Fasc. Math. 58 (2017), no. 1, 155-166.
  26. M. Z. Sarikaya and N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Modelling 54 (2011), no. 9-10, 2175-2182. https://doi.org/10.1016/j.mcm.2011.05.026
  27. M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling 57 (2013), no. 9-10, 2403-2407. https://doi.org/10.1016/j.mcm.2011.12.048
  28. V. V. Uchaikin, Fractional derivatives for physicists and engineers, Springer, Berlin/Heidelberg, Germany, 2013.
  29. D. Zhao and M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903-917. https://doi.org/10.1007/s10092-017-0213-8