DOI QR코드

DOI QR Code

LAPLACE-BELTRAMI MINIMALITY OF TRANSLATION HYPERSURFACES IN E4

  • Ahmet Kazan (Dogansehir Vahap, Kucuk Vocational School, Malatya Turgut Ozal University) ;
  • Mustafa Altin (Technical Sciences Vocational School, Bingol University)
  • Received : 2023.01.02
  • Accepted : 2023.01.25
  • Published : 2023.06.01

Abstract

In the present paper, we study translation hypersurfaces in E4. In this context, firstly we obtain first, second and third Laplace-Beltrami (LBI, LBII and LBIII) operators of the translation hypersurfaces in E4. By solving second and third order nonlinear ordinary differential equations, we prove theorems that contain LBI-minimal, LBII-minimal and LBIII-minimal translation hypersurfaces in E4.

Keywords

References

  1. T. N. Aflalo and M. S. A. Graziano, Four-dimensional spatial reasoning in humans, Journal of Experimental Psychology: Human Perception and Performance 34 (2008), no. 5, 1066-1077. https://doi.org/10.1037/0096-1523.34.5.1066
  2. A. T. Ali, H. S. A. Aziz, and A. H. Sorour, On curvatures and points of the translation surfaces in Euclidean 3-space, Journal of the Egyptian Mathematical Society 23 (2015), no. 1, 167-172. https://doi.org/10.1016/j.joems.2014.02.007
  3. M. Altin, Rotational hypersurfaces generated by weighted mean curvature in $E^4_1$ with density, Thermal Science 26 (2022), no. 4A, 3043-3053. https://doi.org/10.2298/TSCI2204043A
  4. M. Altin, A. Kazan, and H. B. Karada˘g, Monge hypersurfaces in Euclidean 4-space with density, Journal of Polytechnic 23 (2020), no. 1, 207-214.
  5. M. Altin, A. Kazan, and H. B. Karadag, Hypersurface families with Smarandache curves in Galilean 4-space, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 (2021), no. 2, 744-761.
  6. M. Altin, A. Kazan, and D. W. Yoon, 2-ruled hypersurfaces in Euclidean 4-space, Journal of Geometry and Physics 166 (2021), 104236.
  7. M. Altin and A. Kazan, Rotational Hypersurfaces in Lorentz-Minkowski 4-Space, Hacettepe Journal of Mathematics and Statistics 50 (2021), no. 5, 1409-1433. https://doi.org/10.15672/hujms.826596
  8. K. Arslan, B. Bayram, B. Bulca, and G. Ozturk, On translation surfaces in 4-dimensional Euclidean space, Acta et Commentationes Universitatis Tartuensis de Mathematica 20 (2016), no. 2, 123-133. https://doi.org/10.12697/ACUTM.2016.20.11
  9. M. E. Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, Journal of Geometry 107 (2016), no. 3, 603-615. https://doi.org/10.1007/s00022-015-0292-0
  10. M. E. Aydin and A. Mihai, Translation hypersurfaces and Tzitzeica translation hypersurfaces of the Euclidean space, Proceedings of the Romanian Academy, Series A 16 (2015), no. 4, 477-483.
  11. M. E. Aydin and A. O. Ogrenmis, Translation hypersurfaces with constant curvature in 4-dimensional isotropic space, International Journal of Maps in Mathematics 2 (2019), no. 1, 108-130.
  12. C. Bajaj and G. Xu, Anisotropic diffusion of surface and functions on surfaces, ACM Trans. Graphics 22 (2003), no. 1, 4-32. https://doi.org/10.1145/588272.588276
  13. M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation 15 (2003), no. 6, 1373-1396. https://doi.org/10.1162/089976603321780317
  14. M. Bertalmio, G. Sapiro, L. T. Cheng, and S. Osher; A framework for solving surface partial differential equations for computer graphics applications, CAM Report 00-43, UCLA, Mathematics Department, 2000.
  15. F. Cajori, Origins of fourth dimension concepts, The American Mathematical Monthly 33 (1926), no. 8, 397-406. https://doi.org/10.1080/00029890.1926.11986607
  16. I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, 1984.
  17. E. F. Chladni, Entdeckungen uber die Theorie des Klanges, Weidmanns Erben und Reich, Leipzig, 1787.
  18. F. R. K. Chung, Spectral Graph Theory, Providence, RI: American Mathematical Society, 1997.
  19. F. R. K. Chung, A. Grigor'yan and S-T. Yau, Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs, Communications on Analysis and Geometry 8 (2000), 969-1026. https://doi.org/10.4310/CAG.2000.v8.n5.a2
  20. U. Clarenz, U. Diewald, and M. Rumpf, Anisotropic geometric diffusion in surface processing, In: Proceedings of Viz2000, IEEE Visualization, Salt Lake City, UT (2000), 397-505.
  21. G. Clemente and M. D'Elia, Spectrum of the Laplace-Beltrami operator and the phase structure of causal dynamical triangulations, Physical Review D 97 (2018), 124022.
  22. L. Cremona, Graphical Statics (Transl. of Le figure reciproche nelle statica graphica, Milano, 1872), Oxford University Press, 1890.
  23. M. Desbrun, M. Meyer, P. Schroder and A. H. Barr, Implicit fairing of irregular meshes using diffusion and curvature flow, In: SIGGRAPH 99 (1999), 317-324.
  24. F. Dillen, L. Verstraelen and G. Zafindratafa, A generalization of the translation surfaces of Scherk, in: Differential Geometry in Honor of Radu Rosca: Meeting on Pure and Applied Differential Geometry, Leuven, Belgium, 1989, KU Leuven, Departement Wiskunde (1991), 107-109.
  25. G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, In S. Hildebrandt and R. Leis, editors, Partial differential equations and calculus of variations (1988), 142-155.
  26. M. S. Floater and K. Hormann, Surface Parameterization: A Tutorial and Survey, In Advances in Multiresolution for Geometric Modeling (2005), 157-186.
  27. M. Gardner, Mathematical Carnival: From Penny Puzzles. Card Shuffles and Tricks of Lightning Calculators to Roller Coaster Rides into the Fourth Dimension (1st ed.). New York: Knopf. pp. 42, 52-53, 1975.
  28. E. Guler, H. H. Hacisalihoglu, and Y. H. Kim, The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-Space, Symmetry 10 (2018), no. 9, 1-11.
  29. K. Hanbay and M. F. Talu, A novel active contour model for medical images via the Hessian matrix and eigenvalues, Computers Mathematics With Applications 75 (2018), no. 9, 3081-3104. https://doi.org/10.1016/j.camwa.2018.01.033
  30. K. Hanbay, N. Alpaslan, M. F. Talu, and D. Hanbay, Principal curvatures based rotation invariant algorithms for efficient texture classification, Neurocomputing 199 (2016), 77-89. https://doi.org/10.1016/j.neucom.2016.03.032
  31. K. Hanbay, N. Alpaslan, M. F. Talu, D. Hanbay, A. Karci and A. F. Kocamaz, Continuous rotation invariant features for gradient based texture classification, Computer Vision and Image Understanding 132 (2015), 87-101. https://doi.org/10.1016/j.cviu.2014.10.004
  32. T. Hasanis and R. Lopez, Classification and construction of minimal translation surfaces in Euclidean space, Results Math. 75 (2020), Article Number 2.
  33. C. H. Hinton, Rucker, Rudolf v. B. (ed.), Speculations on the Fourth Dimension: Selected writings of Charles H. Hinton, New York: Dover. p. vii, 1980.
  34. C. H. Hinton, The Fourth Dimension, Pomeroy, Washington: Health Research. p. 14, 1993.
  35. D. Jakobson, N. Nadirashvili, and J. Toth, Geometric properties of eigenfunctions, Russian Math. Surveys 56 (2001), no. 6, 1085-1105. https://doi.org/10.1070/RM2001v056n06ABEH000453
  36. E. Karaca, Quaternionic approach of slant ruled surfaces, Adv. Appl. Clifford Algebras 32:42 (2022).
  37. E. Karaca and M. C aliskan, Ruled surfaces and tangent bundle of unit 2-sphere of natural lift curves, Gazi University Journal of Science 33 (2020), no. 3, 751-759. https://doi.org/10.35378/gujs.588496
  38. A.Kazan, M. Altin, and D. W. Yoon, Geometric characterizations of canal hypersurfaces in Euclidean spaces, preprint (2021); arXiv:2111.04448v1 [math.DG].
  39. A.Kazan, M. Altin, and D. W. Yoon, Canal hypersurfaces generated by non-null curves in Lorentz-Minkowski 4-space, preprint (2022); arXiv:2206.12572v1 [math.DG].
  40. A. Kazan, Canal Hypersurfaces according to one of the extended Darboux frame field in Euclidean 4-space, Thermal Science 26 (2022), no. 4A, 3029-3041. https://doi.org/10.2298/TSCI2204029K
  41. R. Kimmel, R. Malladi, and N. Sochen, Image processing via the Beltrami operator, In: Proc. of 3rd Asian Conf. on Computer Vision, Hong Kong, 1998.
  42. R. I. Kondor and J. Lafferty, Diffusion kernels on graphs and other discrete input spaces, In Proceedings of the ICML, 2002.
  43. B. P. Lima, N. L. Santos, and P. A. Sousa, Generalized translation hypersurfaces in Euclidean space, J. Math. Anal. Appl. 470 (2019), 1129-1135. https://doi.org/10.1016/j.jmaa.2018.10.053
  44. B. P. Lima, N. L. Santos, J. P. Silva, and P. A. Sousa, Translation hypersurfaces with constant Sr curvature in the Euclidean space, Anais da Academia Brasileira de Ciencias 88 (2016), no. 4, 2039-2052. https://doi.org/10.1590/0001-3765201620150326
  45. H. Liu, Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom. 64 (1999), 141-149. https://doi.org/10.1007/BF01229219
  46. J. C. Maxwell, On reciprocal figures and diagrams of forces, Phil. Mag. 27 (1864), 250-261. https://doi.org/10.1080/14786446408643663
  47. U. F. Mayer Numerical solutions for the surface diffusion flow in three space dimensions, Comput. Appl. Math. 20 (2001).
  48. M. Meyer, M. Desbrun, P. Schroder, and A. H. Barr, Discrete differential-geometry operator for triangulated 2-manifolds, In: Proc. VisMath'02, Berlin, Germany, 2002.
  49. B. Mohar, Some applications of Laplacian eigenvalues of graphs, In Graph Symmetry: Algebraic Methods and Applications, Hahn G., Sabidussi G., (Eds.). Kluwer (1997), 225-275.
  50. M. Moruz and M. I. Munteanu, Minimal translation hypersurfaces in E4, J. Math. Anal. Appl. 439 (2016), 798-812. https://doi.org/10.1016/j.jmaa.2016.02.077
  51. M. I. Munteanu, O. Palmas, and G. Ruiz-Hernandez, Minimal translation hypersurfaces in Euclidean space, Mediterr. J. Math. 13 (2016), 2659-2676. https://doi.org/10.1007/s00009-015-0645-9
  52. A. Y. Ng, M. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algorithm, In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems, 14. Cambridge, MA: MIT Press, 2002.
  53. M. Reuter, F-E. Wolter, M. Shenton, and M. Niethammer, Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis, Computer-Aided Design 41 (2009), 739-755. https://doi.org/10.1016/j.cad.2009.02.007
  54. M. Reuter, F-E. Wolter, and N. Peinecke, Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids, Computer-Aided Design 38 (2006), 342-366. https://doi.org/10.1016/j.cad.2005.10.011
  55. B. H. Romeny, Geometry Driven Diffusion in Computer Vision, Kluwer, Boston, MA, 1994.
  56. R. Rucker, The Fourth Dimension: A Guided Tour of the Higher Universe, Boston: Houghton Mifflin. p. 18, 1996.
  57. R. M. Rustamov, Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation, Eurographics Symposium on Geometry Processing, Alexander Belyaev, Michael Garland (Editors), 2007.
  58. G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2001.
  59. V. Schlegel, Ueber Projectionsmodelle der regelmassigen vier-dimensionalen Korper, Waren, 1886.
  60. R. Schneider and L. Kobbelt, Generating fair meshes with G1 boundary conditions, In: Geometric Modeling and Processing (2000), 251-261.
  61. R. Schneider and L. Kobbelt, Geometric fairing of triangular meshes for free-form surface design, Computer Aided Geometric Design 18 (2001), no. 4, 359-379. https://doi.org/10.1016/S0167-8396(01)00036-X
  62. B. Senoussi and M. Bekkar, Affine translation surfaces in 3-dimensional Euclidean space satisfying ∆ri = λiri, Konuralp Journal of Mathematics 5 (2017), no. 2, 47-53.
  63. K. Seo, Translation hypersurfaces with constant curvature in space forms, Osaka J. Math 50 (2013), 631-641.
  64. J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Conf. Computer Vision and Pattern Recognition (1997), 731-737.
  65. H. D. Simon, Partitioning of unstructured problems for parallel processing, Computing Systems in Engineering 2 (1991), 135-148.
  66. G. Simonett, The Willmore flow for near spheres, Differential Integral Equations 14 (2001), no. 8, 1005-1014. https://doi.org/10.57262/die/1356123177
  67. Z. M. Sipus and B. Divjak, Translation Surfaces in the Galilean Space, Glasnik Matematicki 46 (2011), no. 66, 457-471.
  68. O. Sorkine, Laplacian mesh processing, Eurographics STAR-State of The Art Report (2005), 53-70.
  69. D. Yang, J. Zhang, and Y. Fu, A note on minimal translation graphs in Euclidean space, Mathematics 7 (2019), no. 10, 889.
  70. D. W. Yoon, On the Gauss map of translation surfaces in Minkowski 3-space, Taiwanese Journal of Mathematics 6 (2002), no. 3, 389-398.
  71. N. Yuksel, M. K. Karacan, and Y. Tuncer, LCN-translation surfaces in affine 3-space, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 69 (2020), no. 1, 461-472.
  72. G. Taubin, Geometric signal processing on polygonal meshes, Eurographics STAR-State of The Art Report, 2000.
  73. G. Taubin, A signal processing approach to fair surface design, In: SIGGRAPH '95 Proceedings (1995), 351-358.
  74. D. Ullmann, Chladni und die Entwicklung der Akustik von 1750-1860, Birkhauser, Basel, 1996.
  75. M. Wardetzky, S. Mathur, F. Kalberer, and E. Grinspun, Discrete Laplace operators: No free lunch, Eurographics Symposium on Geometry Processing, Alexander Belyaev, Michael Garland (Editors), 2007.
  76. J. Weickert, Anisotropic Diffusion in Image Processing, B.G. Teubner, Stuttgart, 1998.
  77. G. Xu, Discrete Laplace-Beltrami operators and their convergence, Computer Aided Geometric Design 21 (2004), 767-784.
  78. S. T. Yau, Problem section of the seminar on differential geometry at Tokyo, Ann. Of Math. Stud. 102 (1982), 669-706.
  79. S. T. Yau, Open problems in geometry. Differential geometry: partial differential equations on manifolds, Proc. Sympos. Pure Math. 54 (1993), 1-28.
  80. S. T. Yau, A note on the distribution of critical points of eigenfunctions, Tsing Hua Lectures on Geometry and Analysis (S. T. Yau, ed.), International Press, Cambridge (1997), 315-317.
  81. H. Zhang, Discrete combinatorial Laplacian operators for digital geometry processing, In Proc. SIAM Conf. Geom. Design and Comp. (2004), 575-592.
  82. H. Zhang, O. V. Kaick, and R. Dyer, Spectral Methods for Mesh Processing and Analysis, Eurographics, STAR-State of The Art Report, 2007.