DOI QR코드

DOI QR Code

Zn3(PO4)2 Protective Layer on Zn Anode for Improved Electro-chemical Properties in Aqueous Zn-ion Batteries

  • Chae-won Kim (Next Generation Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Junghee Choi (Next Generation Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Jin-Hyeok Choi (Korea Electric Power Corporation Research Institute) ;
  • Ji-Youn Seo (Department of Nano Fusion Technology, Pusan National University) ;
  • Gumjae Park (Next Generation Battery Research Center, Korea Electrotechnology Research Institute)
  • Received : 2022.11.15
  • Accepted : 2022.12.14
  • Published : 2023.05.28

Abstract

Aqueous zinc-ion batteries are considered as promising alternatives to lithium-ion batteries for energy storage owing to their safety and cost efficiency. However, their lifespan is limited by the irreversibility of Zn anodes because of Zn dendrite growth and side reactions such as the hydrogen evolution reaction and corrosion during cycling. Herein, we present a strategy to restrict direct contact between the Zn anode and aqueous electrolyte by fabricating a protective layer on the surface of Zn foil via phosphidation method. The Zn3(PO4)2 protective layer effectively suppresses Zn dendrite growth and side reactions in aqueous electrolytes. The electrochemical properties of the Zn3(PO4)2@Zn anode, such as the overpotential, linear polarization resistance, and hydrogen generation reaction, indicate that the protective layer can suppress interfacial corrosion and improve the electrochemical stability compared to that of bare Zn by preventing direct contact between the electrolyte and the active sites of Zn. Remarkably, MnO2 Zn3(PO4)2@Zn exhibited enhanced reversibility owing to the formation a stable porous layer, which effectively inhibited vertical dendrite growth by inducing the uniform plating of Zn2+ ions underneath the formed layer.

Keywords

Acknowledgement

This work was supported by the projects of Korea Electric Power Corporation (R21Ta20).

References

  1. N. L. Rey, J. Mosquera, E. Bataller, F. Orti, C. Dudfield, and A. Orsillo, J. Power Sources, 2008, 181(2), 353-362. https://doi.org/10.1016/j.jpowsour.2007.11.045
  2. G. Zubi, R. Dufo-Lopez, M. Carvalho, and G. Pasaoglu, Renew. Sust. Energ. Rev., 2018, 89, 292-308. https://doi.org/10.1016/j.rser.2018.03.002
  3. B. Scrosati, Electrochim. Acta, 2000, 45(15-16), 2461-2466. https://doi.org/10.1016/S0013-4686(00)00333-9
  4. X. Jia, C. Liu, Z. G. Neale, J. Yang, and G. Cao, Chem. Rev., 2020, 120(15), 7795-7866. https://doi.org/10.1021/acs.chemrev.9b00628
  5. T. Chen, Y. Jin, H. Lv, A. Yang, M. Liu, B. Chen, Y. Xie, and Q. Chen, Trans. Tianjin Univ., 2020, 26, 208-217. https://doi.org/10.1007/s12209-020-00236-w
  6. Q. Wang, L. Jiang, Y. Yu, and J. Sun, Nano Energy, 2019, 55, 93-114. https://doi.org/10.1016/j.nanoen.2018.10.035
  7. A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagace, A. Vijh, and K. Zaghib, J. Power Sources, 2010, 195(3), 845-852. https://doi.org/10.1016/j.jpowsour.2009.08.056
  8. H. Maleki, S. A. Hallaj, J.R. Selman, R.B. Dinwiddie, and H. Wang, J. Electrochem. Soc., 1999, 146(3), 947-954. https://doi.org/10.1149/1.1391704
  9. G. Fang, J. Zhou, A. Pan, and S. Liang, ACS Energy Lett., 2018, 3(10), 2480-2501. https://doi.org/10.1021/acsenergylett.8b01426
  10. J. Shin, J. Lee, Y. Park, and J. Choi, Chem. Sci., 2020, 11, 2028-2044. https://doi.org/10.1039/D0SC00022A
  11. X. Li, J. Zeng, H. Yao, D. Yuan, and L. Zhang, ChemNanoMat, 2021, 7(11), 1162-1176. https://doi.org/10.1002/cnma.202100267
  12. L. Wang and J. Zheng, Mater. Today, 2020, 7, 1000782.
  13. C. Xu, B. Li, H. Du, and F. Kang, Angew. Chem. Int. Ed., 2012, 51(4), 933 -935. https://doi.org/10.1002/anie.201106307
  14. N. Wang, H. Wan, J. Duan, X. Wang, L. Tao, J. Zhang, and H. Wang, Mater. Today Adv., 2021, 11, 100149.
  15. Y. Li, S. Wang, James R. Salvador, J. Wu, B. Liu, W. Yang, J. Yang, W. Zhang, J. Liu, and J. Yang, Chem. Mater., 2019, 31, 2036-2047. https://doi.org/10.1021/acs.chemmater.8b05093
  16. Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo, X. Li, Y. Tang, H. Li, B. Dong, and C. Zhi, Adv. Mater., 2020, 32(48), 2001854.
  17. Y. Zuo, K. Wang, P. Pei, M. Wei, X. Liu, Y. Xiao, and P. Zhang, Mater. Today Energy, 2021, 20, 100692.
  18. V. Jabbari, T. Foroozan, and R. S. Yassar, Adv. Energy Sustain. Res., 2021, 2(4), 2000082.
  19. C. Zhai, D. Zhao, Y. He, H. Huang, B. Chen, X. Wang, and Z. Guo, Batteries, 2022, 8(10), 153.
  20. H. V. Parys, G. Telias, V. Nedashkivskyi, B. Mollay, I. Vandendael, S. V. Damme, J. Deconinck, and A. Hubin, Electrochim. Acta, 2010, 55(20), 5709-5718. https://doi.org/10.1016/j.electacta.2010.05.006
  21. T. C. Li, D. Fang, J. Zhang, M. E. Pam, Z. Y. Leong, J. Yu, X. L. Li, D. Yan, and H. Y. Yang, J. Mater. Chem. A, 2021, 9, 6013-6028. https://doi.org/10.1039/D0TA09111A
  22. A. Bayaguud, Y. Fu, and C. Zhu, J. Energy Chem., 2022, 64, 246-262. https://doi.org/10.1016/j.jechem.2021.04.016
  23. C. Liu, X. Xie, B. Lu, J. Zhou, and S. Liang, ACS Energy Lett., 2021, 6(3), 1015-1033. https://doi.org/10.1021/acsenergylett.0c02684
  24. W. Xiong, D. Yang, T. K. A. Hoang, M. Ahmed, J. Zhi, X. Qiu, and P. Chen., Energy Storage Mater., 2018, 15, 131-138. https://doi.org/10.1016/j.ensm.2018.03.023
  25. K. Xie, K. Ren, C. Sun, S. Yang, M. Tong, S. Yang, Z. Liu, and Q. Wang, ACS Appl. Energy Mater., 2022, 5(4), 4170-4178. https://doi.org/10.1021/acsaem.1c03558
  26. C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D. P. Leonard, I. A. Rodriguez-Perez, J.-X. Jiang, C. Fang, and X. Ji, Chem. Commun., 2018, 54, 14097-14099. https://doi.org/10.1039/C8CC07730D
  27. H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju, Z. Chen, Z. Hu, D. Yan, X. Zhou, and G. Cui, Nat. Commun., 2019, 10, 5374.
  28. Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui, and J. Luo, Energy Environ. Sci., 2021, 14, 3609-3620. https://doi.org/10.1039/D1EE00308A
  29. J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng, S. Zhang, G. Bo, C. Wang, and Z. Guo, Adv. Funct. Mater., 2020, 30(30), 2001263.
  30. Y. Wang, Y. Wang, C. Chen, X. Chen, Q. Zhao, L. Yang, L. Yao, R. Qin, H. Wu, Z. Jiang, and F. Pan, Chem. Commun., 2021, 57, 5326-5329. https://doi.org/10.1039/D1CC00924A
  31. L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen, Y. Li, H. Huang, and C. Zhi, Adv. Mater., 2021, 33(12), 2007406.
  32. Q. Xu, W. Zhou, T. Xin, Z. Zheng, X. Yuan, and J. Liu, J. Mater. Chem. A, 2022, 10, 12247-12257. https://doi.org/10.1039/D2TA02711A
  33. J. Zheng, Z. Huang, Y. Zeng, W. Liu, B. Wei, Z. Qi, Z. Wang, C. Xia, and H. Liang, Nano Lett., 2022, 22(3), 1017-1023. https://doi.org/10.1021/acs.nanolett.1c03917
  34. C. Li, X. Xie, S. Liang, and J. Zhou, Energy Environ. Mater., 2020, 3(2), 146-159. https://doi.org/10.1002/eem2.12067
  35. H. Wan, D. Song, X. Li, D. Zhang, J. Gao, and C. Du, Materials, 2017, 10(6), 654.
  36. S.-M. Lee, J. Kim, J. Moon, K.-N. Jung, J. H. Kim, G.-J. Park, J.-H. Choi, D. Y. Rhee, J.-S. Kim, J.-W. Lee, and M.-S. Park, Nat. Commun., 2021, 12, 39.
  37. H. Yu, J. Xu, Q. Xu, G. Cui, and G. Gu, Inorg. Chem. Commun., 2020, 119, 108015.
  38. S. Gandla, S. R. Gollu, R. Sharma, V. Sarangi, and D. Gupta, Appl. Phys. Lett., 2015, 107, 152102.
  39. W. G. Kidanu, H. Yang, S. Park, J. Hur, and I. T. Kim, Batteries, 2022, 8(11), 208. https://doi.org/10.3390/batteries8110208
  40. K.-H. Chen, K. N. Wood, E. Kazyak, W. S. LePage, A. L. Davis, A. J. Sanchez, and N. P. Dasgupta, J. Mater. Chem. A, 2017, 5, 11671-11681. https://doi.org/10.1039/C7TA00371D
  41. B.-F. Cui, X.-P. Han, and W.-B. Hu, Small Struct., 2021, 2(6), 2000128.
  42. T. Xiang, Y. Han, Z. Guo, R. Wang, S. Zheng, S. Li, C. Li, and X. Dai, ACS Sustain. Chem. Eng., 2018, 6(4), 5598-5606. https://doi.org/10.1021/acssuschemeng.8b00639
  43. Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, and G. Cui, Energy Environ. Sci., 2019, 12, 1938-1949. https://doi.org/10.1039/C9EE00596J
  44. L. Zhou, L. Liu, Z. Hao, Z. Yan, X. F. Yu, P. K. Chu, K. Zhang, and J. Chen, Matter, 2021, 4(4), 1252-1273. https://doi.org/10.1016/j.matt.2021.01.022