DOI QR코드

DOI QR Code

Sensing Characterization of Metal Oxide Semiconductor-Based Sensor Arrays for Gas Mixtures in Air

  • Jung-Sik Kim (Department of Materials Science and Engineering, University of Seoul)
  • Received : 2023.04.04
  • Accepted : 2023.05.22
  • Published : 2023.05.27

Abstract

Micro-electronic gas sensor devices were developed for the detection of carbon monoxide (CO), nitrogen oxides (NOx), ammonia (NH3), and formaldehyde (HCHO), as well as binary mixed-gas systems. Four gas sensing materials for different target gases, Pd-SnO2 for CO, In2O3 for NOx, Ru-WO3 for NH3, and SnO2-ZnO for HCHO, were synthesized using a sol-gel method, and sensor devices were then fabricated using a micro sensor platform. The gas sensing behavior and sensor response to the gas mixture were examined for six mixed gas systems using the experimental data in MEMS gas sensor arrays in sole gases and their mixtures. The gas sensing behavior with the mixed gas system suggests that specific adsorption and selective activation of the adsorption sites might occur in gas mixtures, and allow selectivity for the adsorption of a particular gas. The careful pattern recognition of sensing data obtained by the sensor array made it possible to distinguish a gas species from a gas mixture and to measure its concentration.

Keywords

Acknowledgement

This study was supported by the 2022 Research Fund of the University of Seoul.

References

  1. D. Degler, U. Weimar and N. Barsan, ACS Sens., 4, 2228 (2019).
  2. Y. K. Gautam, K. Sharma, S. Tyagi, A. K. Ambedkar, M. Chaudhary and B. P. Singh, R. Soc. Open Sci., 8, 2013244 (2021).
  3. A. Vergara, E. Llobet, J. Brezmes, P. Ivanov, C. Cane, I. Gracia, X. Vilanova and X. Correig, Sens. Actuators, B, 123, 1002 (2007).
  4. I. Kiselev, M. Sommer, J. K. Mann and V. V. Sysoev, IEEE Sens. J., 10, 849 (2010).
  5. K. Persaud and G. Dodd, Nature, 299, 352 (1982).
  6. U. Weimar and W. Gopel, Sens. Actuators, B, 52, 143 (1998). https://doi.org/10.1016/S0925-4005(98)00268-8
  7. J. Zhang, Z. Qin, D. Zeng and C. Xie, Phys. Chem. Chem. Phys., 19, 6313 (2017).
  8. B. Sharma, A. Sharma and J.-S. Kim, Sens. Actuators, B, 262, 758 (2018). https://doi.org/10.1016/j.snb.2018.01.212
  9. P. Althainz, J. Goschnick, S. Ehrmann and H. J. Ache, Sens. Actuators, B, 33, 72 (1996). https://doi.org/10.1016/0925-4005(96)01838-2
  10. P. Ivanov, E. Llobet, X. Vilanova, J. Brezmes, J. Hubalek and X. Correig, Sens. Actuators, B, 99, 201 (2004).
  11. K. Sun, G. Zhan, L. Zhang, Z. Wang and S. Lin, Sens. Actuators, B, 379, 133294 (2023).
  12. V. V. Sysoev, T. Schneider, J. Goschnick, I. Kiselev, E. Strelcov and A. Kolmakov, Sens. Actuators, B, 139, 699 (2009). https://doi.org/10.1016/j.snb.2009.03.065
  13. V. V. Sysoev, K. B. Button, K. Wepsiec, S. Dmitriev and A. Kolmakov, Nano Lett., 6, 1584 (2006).
  14. H. Huang, Y. C. Lee, C. L. Chow, O. K. Tan, M. S. Tse and T. White, Sens. Actuators, B, 138, 201 (2009).
  15. S. Minghua, IEEE Trans. Instrum. Meas., 55, 1786 (2006).
  16. S. Zhang, C. Xie, D. Zeng, H. Li, Z. Bai and S. Cai, IEEE Sens. J., 8, 1816 (2008).
  17. S. Giri, P. N. Anantharamaiah and B. Sahoo, Adv. Powder Technol., 33, 103529 (2022).
  18. S. D. Kim, B. J. Kim, J. H. Yoon and J. S. Kim, J. Korean Phys. Soc., 51, 2069 (2007).
  19. J.-H. Yoon and J.-S. Kim, Adv. Mater. Res., 74, 255 (2009).
  20. M. Breedon, P. Spizzirri, M. Taylor, J. d. Plessis, D. McCulloch, J. Zhu, L. Yu, Z. Hu, C. Rix, W. Wlodarski and K. Kalantar-zadeh, Cryst. Growth Des., 10, 430 (2010).
  21. W. S. Choi, B. J. Kim, H. J. Lee, J. W. Choi, S. D. Kim and N. K. Min, J. Nanosci. Nanotechnol., 12, 1 (2012).
  22. K. Minami, G. Imamura, T. Nemoto, K. Shiba and G. Yoshikawa, Mater. Horiz., 6, 580 (2019).
  23. H. Ji, Y. Liu, R. Jhang, Z. Yuan and F. Meng, Sens. Actuators, B, 376, 132969 (2023).