DOI QR코드

DOI QR Code

Rhizospheric-Derived Nocardiopsis alba BH35 as an Effective Biocontrol Agent Actinobacterium with Antifungal and Plant Growth-Promoting Effects: In Vitro Studies

  • Mohamed H. El-Sayed (Department of Botany and Microbiology, Faculty of Science, Al-Azhar University) ;
  • Abd El-Nasser A. Kobisi (Plant Protection Department, Desert Research Center) ;
  • Islam A. Elsehemy (Department of Natural and Microbial Products Chemistry, Division of Pharmaceutical and Drug Industries Research, National Research Center) ;
  • Mohamed A. El-Sakhawy (Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University)
  • Received : 2023.01.02
  • Accepted : 2023.02.03
  • Published : 2023.05.28

Abstract

The biocontrol approach using beneficial microorganisms to control crop diseases is becoming an essential alternative to chemical fungicides. Therefore, new and efficient biocontrol agents (BCA) are needed. In this study, a rhizospheric actinomycete isolate showed unique and promising antagonistic activity against three of the most common phytopathogenic fungi, Fusarium oxysporum MH105, Rhizoctonia solani To18, and Alternaria brassicicola CBS107. Identification of the antagonistic strain, which was performed according to spore morphology and cell wall chemotype, suggested that it belongs to the Nocardiopsaceae. Furthermore, cultural, physiological, and biochemical characteristics, together with phylogenetic analysis of the 16S rRNA gene (OP869859.1), indicated the identity of this strain to Nocardiopsis alba. The cell-free filtrate (CFF) of the strain was evaluated for its antifungal potency, and the resultant inhibition zone diameters ranged from 17.0 ± 0.92 to 19.5 ± 0.28 mm for the tested fungal species. Additionally, the CFF was evaluated in vitro to control Fusarium wilt disease in Vicia faba using the spraying method under greenhouse conditions, and the results showed marked differences in virulence between the control and treatment plants, indicating the biocontrol efficacy of this actinomycete. A promising plant-growth promoting (PGP) ability in seed germination and seedling growth of V. faba was also recorded in vitro for the CFF, which displayed PGP traits of phosphate solubilization (48 mg/100 ml) as well as production of indole acetic acid (34 ㎍/ml) and ammonia (20 ㎍/ml). This study provided scientific validation that the new rhizobacterium Nocardiopsis alba strain BH35 could be further utilized in bioformulation and possesses biocontrol and plant growth-promoting capabilities.

Keywords

Acknowledgement

This study was supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

References

  1. Oerke EC. 2006. Crop losses to pests. J. Agric. Sci. 144: 31-43. https://doi.org/10.1017/S0021859605005708
  2. Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal AS, et al. 2021. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 283: 124657.
  3. Bhardwaj T, Sharma JP. 2013. Impact of pesticides application in agricultural industry: an Indian scenario. Int. J. Agric. Food Sci. Technol. 4: 2249-3050.
  4. Hamblin JD. 2015. Pick your poison Banned: a history of pesticides and the science of toxicology Frederick Rowe Davis Yale University Press, 2014. pp. 284. Science 347: 1208.
  5. Laxmishree C, Nandita S. 2017. Botanical pesticides, a major alternative to chemical pesticides: a review. Int. J. Life Sci. 5: 722-729.
  6. Kaur T, Rani R, Manhas RK. 2019. Biocontrol and plant growth promoting potential of phylogenetically new Streptomyces sp. MR14 of rhizospheric origin. AMB Express 9: 125.
  7. De Vrije T, Antoine N, Buitelaar RM, Bruckner S, Dissevelt M, Durand A, et al. 2001. The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl. Microbiol. Biotechnol. 56: 58-68. https://doi.org/10.1007/s002530100678
  8. Sokolova TA. 2015. Specificity of soil properties in the rhizosphere: analysis of literature data. Eurasian Soil Sci. 48: 968-980. https://doi.org/10.1134/S1064229315050099
  9. Bhatti AA, Haq S, Bhat RA. 2017. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 111: 458-467. https://doi.org/10.1016/j.micpath.2017.09.036
  10. Poomthongdee N, Duangmal K, Pathom-Aree W. 2015. Acidophilic actinomycetes from rhizosphere soil: diversity and properties beneficial to plants. J. Antibiot. (Tokyo) 68: 106-114. https://doi.org/10.1038/ja.2014.117
  11. Daquioag JEL, Penuliar GM. 2021. Isolation of actinomycetes with cellulolytic and antimicrobial activities from soils collected from an urban green space in the Philippines. Int. J. Microbiol. 2021: 6699430.
  12. Mukherjee G, Sen SK. 2006. Purification, characterization, and antifungal activity of chitinase from Streptomyces venezuelae P10. Curr. Microbiol. 53: 265-269. https://doi.org/10.1007/s00284-005-0412-4
  13. Khamna S, Yokota A, Lumyong S. 2009. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 25: 649-655. https://doi.org/10.1007/s11274-008-9933-x
  14. Shi L, Nwet TT, Ge B, Zhao W, Liu B, Cui H, et al. 2018. Antifungal and plant growth-promoting activities of Streptomyces roseoflavus strain NKZ-259. Biol. Control 125: 57-64. https://doi.org/10.1016/j.biocontrol.2018.06.012
  15. El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, et al. 2000. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol. 49: 573-583. https://doi.org/10.1046/j.1365-3059.2000.00494.x
  16. Ebrahimi-Zarandi M, Saberi Riseh R, Tarkka MT. 2022. Actinobacteria as effective biocontrol agents against plant pathogens, an overview on their role in eliciting plant defense. Microorganisms 10: 1739.
  17. Le KD, Yu NH, Park AR, Park DJ, Kim CJ, Kim JC. 2022. Streptomyces sp. AN090126 as a biocontrol agent against bacterial and fungal plant diseases. Microorganisms 10: 791.
  18. Allali K, Goudjal Y, Zamoum M, Bouznada K, Sabaou N, Zitouni A. 2019. Nocardiopsis dassonvillei strain MB22 from the Algerian Sahara promotes wheat seedlings growth and potentially controls the common root rot pathogen Bipolaris sorokiniana. J. Plant Pathol. 101: 1115-1125. https://doi.org/10.1007/s42161-019-00347-x
  19. Widada J, Damayanti E, Alhakim MR, Yuwono T, Mustofa M. 2021. Two strains of airborne Nocardiopsis alba producing different volatile organic compounds (VOCs) as biofungicide for Ganoderma boninense. FEMS Microbiol. Lett. 368: fnab138.
  20. Allali K, Zamoum M, Benadjila A, Zitouni A, Goudjal Y. 2022. Optimisation of talcum powder formulation based on Nocardiopsis albirubida strain NA2 spores for biocontrol of Bipolaris sorokiniana root rot in durum wheat seedlings. Biocontrol Sci. Technol. 32: 1434-1452. https://doi.org/10.1080/09583157.2022.2136623
  21. Sun H, Lapidus A, Nolan M, Lucas S, del Rio TG, Tice H, et al. 2010. Complete genome sequence of Nocardiopsis dassonvillei type strain (IMRU 509 T). Stand. Genomic Sci. 3: 325-336. https://doi.org/10.4056/sigs.1363462
  22. Bennur T, Kumar AR, Zinjarde S, Javdekar V. 2015. Nocardiopsis species: incidence, ecological roles and adaptations. Microbiol. Res. 174: 33-47. https://doi.org/10.1016/j.micres.2015.03.010
  23. Chun J, Kyung Sook Bae, Eun Young Moon, Jung SO, Hong Kum Lee, Kim SJ. 2000. Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int. J. Syst. Evol. Microbiol. 50: 1909-1913. https://doi.org/10.1099/00207713-50-5-1909
  24. Fang C, Zhang J, Pang H, Li Y, Xin Y, Zhang Y. 2011. Nocardiopsis flavescens sp. nov., an actinomycete isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 61: 2640-2645. https://doi.org/10.1099/ijs.0.027987-0
  25. Zhang YG, Lu XH, Ding YB, Zhou XK, Wang HF, Guo JW, et al. 2016. Nocardiopsis rhizosphaerae sp. nov., isolated from rhizosphere soil of Halocnermum strobilaceum (Pall.) Bieb. Int. J. Syst. Evol. Microbiol. 66: 5129-5133. https://doi.org/10.1099/ijsem.0.001483
  26. AbdElgawad H, Zinta G, Abuelsoud W, Hassan YM, Alkhalifah DHM, Hozzein WN, et al. 2021. An actinomycete strain of Nocardiopsis lucentensis reduces arsenic toxicity in barley and maize. J. Hazard. Mater. 417: 126055.
  27. Patel GB, Rakholiya P, Shindhal T, Varjani S, Tabhani NM, Shah KR. 2021. Lipolytic Nocardiopsis for reduction of pollution load in textile industry effluent and SWISS model for structural study of lipase. Bioresour. Technol. 341: 125673.
  28. Adenan NH, Lim YY, Ting ASY. 2021. Nocardiopsis sp. for the removal of triphenylmethane dyes: decolorization and optimization studies. Water. Air. Soil Pollut. 232: 414.
  29. Torres-Rodriguez JA, Reyes-Perez JJ, Quinones-Aguilar EE, Hernandez-Montiel LG. 2022. Actinomycete potential as biocontrol agent of phytopathogenic fungi: mechanisms, source, and applications. Plants (Basel) 11: 3201.
  30. Adlin Jenifer JSC, Michaelbabu M, Eswaramoorthy Thirumalaikumar CL, Jeraldin Nisha SR, Uma G, Citarasu T. 2019. Antimicrobial potential of haloalkaliphilic Nocardiopsis sp. AJ1 isolated from solar salterns in India. J. Basic Microbiol. 59: 288-301. https://doi.org/10.1002/jobm.201800252
  31. Sathya A, Vijayabharathi R, Gopalakrishnan S. 2017. Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech 7: 102.
  32. Seong CN, Choi JH, Baik KS. 2001. An improved selective isolation of rare actinomycetes from forest soil. J. Microbiol. 39: 17-23.
  33. Sineva O, Terekhova L. 2015. Selective isolation of rare actinomycetes from soil. Antibiot. Chemother. 60: 27-33.
  34. Crawford DL, Lynch JM, Whipps JM, Ousley MA. 1993. Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl. Environ. Microbiol. 59: 3899-3905. https://doi.org/10.1128/aem.59.11.3899-3905.1993
  35. Dikin A, Sijam K, Kadir J, Semanz IA. 2006. Antagonistic bacteria against Schizophyllum commune Fr. in Peninsular Malaysia. Biotropia 13: 111-121. https://doi.org/10.11598/btb.2006.13.2.221
  36. Shirling EB, Gottlieb D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340. https://doi.org/10.1099/00207713-16-3-313
  37. Williams ST, Goodfellow M, Alderson G. 1989. Genus Nocardiopsis Meyer 1976, pp. 2562-2569. In Williams ST, Sharpe ME, Holt JP (eds.), Bergey's Manual of Systematic Bacteriology Vol. 4, 1st Ed. Williams & Wilkins, Baltimore, USA.
  38. Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, et al. 2012. Bergey's Manual of Systematic Bacteriology, Volume 5: The Actinobacteria, part A, pp. 1891-1906. 2nd Ed. Springer, New York, USA.
  39. Tresner HD, Davies MC, Backus EJ. 1961. Electron microscopy of Streptomyces spore morphology and its role in species differentiation. J. Bacteriol. 81: 70-80. https://doi.org/10.1128/jb.81.1.70-80.1961
  40. Becker B, Lechevalier MP, Gordon RE, Lechevalier HA. 1964. Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl. Microbiol. 12: 421-423. https://doi.org/10.1128/am.12.5.421-423.1964
  41. Lechevalier MP, Lechevalier H. 1970. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol. 20: 435-443. https://doi.org/10.1099/00207713-20-4-435
  42. Goodfellow M. 1971. Numerical taxonomy of some nocardioform bacteria. J. Gen. Microbiol. 69: 33-39. https://doi.org/10.1099/00221287-69-1-33
  43. Holt J, Krieg N, Sneath P, Staley J, Williams S. 1994. Bergey's Manual of Determinative Bacteriology, pp.1710-1728. 9th Ed. Williams & Wilkins, Baltimore, USA.
  44. Sambrook J, Maccallum P, Russell D. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York, USA.
  45. Edwards U, Rogall T, Blocker H, Emde M, Bottger EC. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17: 7843-7853. https://doi.org/10.1093/nar/17.19.7843
  46. Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA74: 5463-5467.
  47. Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022-3027. https://doi.org/10.1093/molbev/msab120
  48. Nino J, Espinal CM, Mosquera OM, Correa YM. 2003. Antimycotic activity of 20 plants from Colombian flora. Pharm. Biol. 41: 491-496. https://doi.org/10.1080/13880200308951341
  49. Degani O, Maor R, Hadar R, Sharon A, Horwitz BA. 2004. Host physiology and pathogenic variation of Cochliobolus heterostrophus strains with mutations in the G protein alpha subunit, CGA1. Appl. Environ. Microbiol. 70: 5005-5009. https://doi.org/10.1128/AEM.70.8.5005-5009.2004
  50. Macias FA, Castellano D, Molinillo JMG. 2000. Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J. Agric. Food Chem. 48: 2512-2521. https://doi.org/10.1021/jf9903051
  51. Chen J, Hu L, Chen N, Jia R, Ma Q, Wang Y. 2021. The biocontrol and plant growth-promoting properties of Streptomyces alfalfae XN-04 revealed by functional and genomic analysis. Front. Microbiol. 12: 745766.
  52. Bric JM, Bostock RM, Silverstone SE. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57: 535-538. https://doi.org/10.1128/aem.57.2.535-538.1991
  53. Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  54. Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y. 2008. Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Appl. Soil Ecol. 38: 12-19. https://doi.org/10.1016/j.apsoil.2007.08.007
  55. Cappuccino J, Sherman N. 1992. Microbiology: A Laboratory Manual. 3rd Ed. Benjamin-Cummings Pub Co, New York, USA.
  56. Geissbuhler H, Brenneisen P, Fischer HP. 1982. Frontiers in crop production: chemical research objectives. Science 217: 505-510. https://doi.org/10.1126/science.217.4559.505
  57. van Lenteren JC, Bolckmans K, Kohl J, Ravensberg WJ, Urbaneja A. 2018. Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63: 39-59. https://doi.org/10.1007/s10526-017-9801-4
  58. Kunova A, Bonaldi M, Saracchi M, Pizzatti C, Chen X, Cortesi P. 2016. Selection of Streptomyces against soil borne fungal pathogens by a standardized dual culture assay and evaluation of their effects on seed germination and plant growth. BMC Microbiol. 16: 272.
  59. Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 37: 955-964. https://doi.org/10.1016/j.soilbio.2004.10.021
  60. Albarracin Orio AG, Brucher E, Ducasse DA. 2016. A strain of Bacillus subtilis subsp. subtilis shows a specific antagonistic activity against the soil-borne pathogen of onion Setophoma terrestris. Eur. J. Plant Pathol. 144: 217-223. https://doi.org/10.1007/s10658-015-0762-0
  61. Abdelrahman O, Yagi S, El Siddig M, El Hussein A, Germanier F, De Vrieze M, et al. 2022. Evaluating the antagonistic potential of actinomycete strains isolated from Sudan's soils against Phytophthora infestans. Front. Microbiol. 13: 827824.
  62. Hata EM, Sijam K, Ahmad ZAM, Yusof MT, Azman NA NA. 2015. In vitro antimicrobial assay of actinomycetes in rice against Xanthomonas oryzae pv. oryzicola and as potential plant growth promoter. Brazilian Arch. Biol. Technol. 58: 821-832. https://doi.org/10.1590/S1516-89132015060263
  63. Hasegawa S, Meguro A, Shimizu M, Nishimura T, Kunoh H. 2006. Endophytic actinomycetes and their interactions with host plants. Actinomycetologica 20: 72-81. https://doi.org/10.3209/saj.20.72
  64. Pliego C, Ramos C, de Vicente A, Cazorla FM. 2011. Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant Soil 340: 505-520. https://doi.org/10.1007/s11104-010-0615-8
  65. Marimuthu S, Karthic C, Mostafa AA, Mohammed Al-Enazi N, Abdel-Raouf N, Nageh Sholkamy E. 2020. Antifungal activity of Streptomyces sp. SLR03 against tea fungal plant pathogen Pestalotiopsis theae. J. King Saud Univ. Sci. 32: 3258-3264. https://doi.org/10.1016/j.jksus.2020.08.027
  66. Patel KB, Thakker JN. 2019. Growth promotion and biocontrol activity of Nocardiopsis dassonvillei strain YM12: an isolate from coastal agricultural land of Khambhat. Vegetos 32: 571-582. https://doi.org/10.1007/s42535-019-00064-x
  67. Baayen RP, O'Donnell K, Bonants PJM, Cigelnik E, Kroon LPNM, Roebroeck EJA, et al. 2000. Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology 90: 891-900. https://doi.org/10.1094/PHYTO.2000.90.8.891
  68. Djebaili R, Pellegrini M, Bernardi M, Smati M, Kitouni M, Gallo M Del. 2020. Biocontrol activity of actinomycetes strains against fungal and bacterial pathogens of Solanum lycopersicum L. and Daucus carota L.: in vitro and in planta antagonistic activity, p 27. The 1st International Electronic Conference on Plant Science, 1-15 December 2020. MDPI.
  69. Luo W, Liu L, Qi G, Yang F, Shi X, Zhao X. 2019. Embedding Bacillus velezensis NH-1 in microcapsules for biocontrol of cucumber Fusarium wilt. Appl. Environ. Microbiol. 85: e03128-18.
  70. Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, Vi Nguyen D, Rostas M, Braithwaite M, et al. 2017. Environmental growth conditions of Trichoderma spp. Affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front. Plant Sci. 8: 102.
  71. Diaz-Gutierrez C, Arroyave C, Llugany M, Poschenrieder C, Martos S, Pelaez C. 2021. Trichoderma asperellum as a preventive and curative agent to control Fusarium wilt in Stevia rebaudiana. Biol. Control 155: 104537.
  72. Li Y, Guo Q, Wei X, Xue Q, Lai H. 2019. Biocontrol effects of Penicillium griseofulvum against monkshood (Aconitum carmichaelii Debx.) root diseases caused by Sclerotium rolfsiii and Fusarium spp. J. Appl. Microbiol. 127: 1532-1545. https://doi.org/10.1111/jam.14382
  73. Peng C, An D, Ding WX, Zhu YX, Ye L, Li J. 2020. Fungichromin production by Streptomyces sp. WP-1, an endophyte from Pinus dabeshanensis, and its antifungal activity against Fusarium oxysporum. Appl. Microbiol. Biotechnol. 104: 10437-10449. https://doi.org/10.1007/s00253-020-10996-z
  74. Heinsch SC, Hsu SY, Otto-Hanson L, Kinkel L, Smanski MJ. 2019. Complete genome sequences of Streptomyces spp. isolated from disease-suppressive soils. BMC Genomics 20: 994.
  75. Kim YJ, Kim J heon, Rho JY. 2019. Antifungal activities of Streptomyces blastmyceticus strain 12-6 against plant pathogenic fungi. Mycobiology 47: 329-334. https://doi.org/10.1080/12298093.2019.1635425
  76. Haddoudi I, Cabrefiga J, Mora I, Mhadhbi H, Montesinos E, Mrabet M. 2021. Biological control of Fusarium wilt caused by Fusarium equiseti in Vicia faba with broad spectrum antifungal plant-associated Bacillus spp. Biol. Control 160: 104671.
  77. Toumatia O, Yekkour A, Goudjal Y, Riba A, Coppel Y, Mathieu F, et al. 2015. Antifungal properties of an actinomycin D-producing strain, Streptomyces sp. IA1, isolated from a Saharan soil. J. Basic Microbiol. 55: 221-228. https://doi.org/10.1002/jobm.201400202
  78. Berg G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84: 11-18. https://doi.org/10.1007/s00253-009-2092-7